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Abstract 

This work has three goals. The first is to derive closed-form spatially averaged two-way 

diffraction corrections for focused piston transducers operating in pulsed mode. The goal 

is attained by (i) establishing that the arccos and Lommel diffraction formulations form 

an approximate Fourier transform pair and (ii) exploiting this newly established Fourier 

equivalence in rigorous and original derivations of spatially averaged diffraction corrections 

for one-way and two-way diffraction. In addition to the first goal, this research has two larger 

goals. The first is to develop a unified theory of spatially averaged diffraction corrections 

for piston transducers. The second is to advance the scientific community's understanding 

of diffraction from a circular aperture, a ubiquitous and fundamental physical problem. 

When viewed in its entirety, this research attains these larger goals by presenting rigorous 

derivations and original analyses that unify and extend existing theory with generalized 

results and fresh insights. Finally, an aspect of the unified theory is tested in a practical 

application. Specifically, two-way diffraction corrections are applied to ultrasonic data 

obtained from laboratory experiments. The diffraction corrections are implemented as 

time-varying filters using a short-time Fourier technique known as the weighted overlap-add 

method. Raw and diffraction-corrected RF data are quantitatively compared via spectral 

centroids, and B-mode images are reconstructed from diffraction-corrected data. 
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Chapter 1 

Introduction 

This work has three goals. The first and most immediate is to derive a closed-form spa- 

tially averaged two-way diffraction correction for a focused piston transducer operating in 

pulsed mode. The immediate goal is attained by (i) establishing that, in the case of one- 

way diffraction with a point receiver, the arccos and Lommel diffraction formulations form 

an approximate Fourier transform pair and (ii) exploiting this newly established Fourier 

equivalence in rigorous and original derivations of spatially averaged diffraction corrections 

for both one-way and two-way diffraction. In addition to the immediate goal, this research 

has two larger goals. The first is to develop a unified theory of spatially averaged diffrac- 

tion corrections for piston transducers. The second is to advance the scientific community's 

understanding of diffraction from a circular aperture. When viewed in its entirety, this re- 

search attains these two goals by presenting rigorous derivations and original analyses that 

unify and extend previously disjoint and limited theory with fresh insights and generalized 

results. Finally, an aspect of the new unified theory is applied to gauge the practicality 

of the theory. Specifically, two-way diffraction corrections are applied to ultrasonic data 

obtained from laboratory experiments. The diffraction corrections are time-varying fil- 

ters implemented with a short-time Fourier technique known as the weighted overlap-add 

method. Raw and diffraction-corrected RF data are quantitatively compared via spectral 

centroids, and B-mode images are reconstructed from diffraction-corrected data. 



Diffraction from a circular aperture is a ubiquitous and fundamental physical prob- 

lem. Its occurrence in optics (lenses), acoustics (loudspeakers), electromagnetics (dish an- 

tennas) and ultrasonics (piston transducers) testifies to its ubiquity, while its fundamental 

nature is found in its simple description coupled with its not-so-simple set of solutions— 

solutions which have preoccupied scientific minds since 1885 at least. 

What is diffraction from a circular aperture, and why bother looking at a problem 

that has been investigated off and on for over a century? What do terms such as spatially 

averaged, two-way, and pulsed-mode mean? And why are they important? How does 

diffraction from a circular aperture arise in the context of ultrasound? 

The purpose of this chapter is to answer these and other questions and, in so doing, 

introduce concepts and definitions used in later chapters. The emphasis at this stage is on 

pedagogy rather than precision. Also included in this chapter is a section which delineates 

the scope of the research; the same section also states underlying assumptions. Another 

section previews the remaining chapters, and a final section refutes two potential objections 

to the unified theory being proposed. 

1.1    Ultrasonic Reflection Imaging 

In a biomedical context, an ultrasonic transducer generates and couples a sound wave to 

the anatomy under examination (Fig. 1.1). The sound wave interacts with tissue and is 

scattered as it propagates. Some of the scattered energy reflects back to the transducer. 

The acoustic energy of the reflected wave is received and converted into a voltage that varies 

as a function of time. The voltage at the output of the receiver shown in Fig. 1.1 is known 

as an A -line. 

An A-line is a radio-frequency (RF) voltage whose spectrum is centered about 

a particular frequency. The RF A-line can be analyzed at RF or, more commonly, its 

center frequency can be brought to baseband via a process known as envelope detection 

and subsequently displayed as an intensity line.   This is known as A -mode imaging [4]. 
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Figure 1.1: Ultrasonic reflection imaging. 

As an aside, RF data is high-frequency data, while baseband or envelope-detected data is 

low-frequency data. See Gagliardi [21] for definitions of RF and baseband. 

The transducer can be moved laterally and a 2-D array of RF A-lines built up. 

Each RF A-line in the 2-D array can be processed via envelope detection and subsequently 

displayed as a gray-scale image. This is known as B-mode imaging. Gray-scale obstetric 

images (a baby in a mother's tummy, if you will) are familiar examples of B-mode imaging. 



Both A-mode and B-mode reflection imaging are similar to radar. The transducer 

sends out ultrasonic energy and detects what energy is reflected back. Like an antenna in 

radar, the transducer in ultrasonic reflection imaging acts as both transmitter and receiver. 

In terms of efficiency and cost, ultrasonic imaging is much faster and cheaper than 

other imaging modalities such as X-ray and magnetic resonance imaging (MRI). But in 

terms of resolution and contrast, ultrasonic imaging is vastly inferior to these same imaging 

modalities. One cause for the inferior quality of ultrasonic imaging is diffraction, the topic 

of the next section. 

1.2    Diffraction from a Circular Aperture 

The phenomenon known as diffraction is fundamental to the study of wave propagation 

through an aperture of any shape. However, only circular apertures are considered in 

this research. Diffraction from a circular aperture can be described with a simple, yet 

familiar, example from optics. Consider shining a flashlight on a wall in a dark room. The 

illumination on the wall depends on the distance between the flashlight and the wall—the 

larger the distance between the flashlight and the wall, the dimmer the illumination but 

the greater the illuminated area; the smaller the distance, the brighter the illumination but 

the smaller the illuminated area. More succinctly, brightness is inversely proportional in 

some fashion to distance, while illuminated area is proportional in some fashion to distance. 

Fig. 1.2 illustrates this familiar example and depicts diffraction as beam or energy spread. 

Diffraction affects acoustic and ultrasonic energy in a similar fashion. A loudspeaker and 

piston transducer are quintessential examples of diffraction from a circular aperture in 

acoustics and ultrasonics, respectively. 

The important point is that diffraction causes waves to spread in a spatially varying 

fashion. In ultrasound, distance or depth z is related to time t via z = ct/2 where c is the 

speed of sound. Thus, the effects of ultrasonic diffraction change with time, and correcting 

for the effects of ultrasonic diffraction will require time-varying filtering.   This simplistic 
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Figure 1.2: Simple example of diffraction. 

characterization of diffraction as spatially varying beam spread becomes inadequate when 

other factors, such as aperture size, frequency, and focusing, are considered. 

The term monochromatic implies single-frequency or continuous wave excitation. 

For monochromatic excitation of a given frequency, the distance from the aperture at which 

noticeable beam spread begins is proportional in some fashion to the aperture size. Similarly, 

for a given aperture size, the distance from the aperture at which noticeable beam spread 

begins is proportional in some fashion to the excitation frequency. Focusing adds even more 

complexity. Fig. 1.3 illustrates how changes in aperture size, frequency, and focusing affect 

diffraction from a piston transducer. 

Fig. 1.3 implies that the beam is approximately collimated out to a certain distance 

and then begins to diverge. The notion of a clear-cut demarcation between collimated and 
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Figure 1.3: Factors affecting diffraction. 

diverging regions is a useful oversimplification and applies to monochromatic excitation only. 

Furthermore, the collimated and diverging regions are loosely associated with the near field 

and far field, respectively [22]. The importance of these observations will be clarified later. 

The term polychromatic implies multi-frequency or pulsed excitation; a piston 

transducer operating in pulsed mode is said to be excited polychromatically or impulsively. 

And describing the diffraction effects becomes exceedingly complicated if the transducer ex- 

citation is polychromatic. In this case, there are collimated and diverging regions associated 

with each frequency contained in the excitation. 



1.3    The Arccos and Lommel Diffraction Formulations 

The discussion of diffraction can be put on a more mathematical footing by considering 

Fig. 1.4 and introducing the scalar function Hi(p,z,u>) which characterizes the disturbance 

y? 

Figure 1.4: Diffraction from a circular aperture. 

sensed by a point receiver at a radial distance p from the axis due to some monochromatic ex- 

citation of the aperture. It can be shown [24] that Hi (p, z, u) satisfies the time-independent 

Helmholtz wave equation: 

(V2 + k2)H1(p,z,u)=0. (1.1) 

Lommel [25] investigated this problem in 1885, and his solution for Hi(p, z, u) is the Lommel 

diffraction formulation. In 1961, Oberhettinger [44] characterized the disturbance at the 

point p due to pulsed or impulsive excitation of the aperture, and his solution is the arccos 

diffraction formulation. 

For now, attention is drawn to the fact that the two formulations are similar in that 

they both characterize the effects of one-way diffraction from a circular aperture at a point 

(an infinitesimally small area); thus, the arccos and Lommel diffraction formulations seem 

amenable to some type of unification. Much more will be said about these two formulations 



and their heretofore overlooked connection in Chapter 3. The distinction between one-way 

and two-way diffraction and its importance is explained in the next section. 

1.4    One-way and Two-way Diffraction 

Prom a physical standpoint, one-way diffraction implies energy travel in one direction— 

away from the source. Two-way diffraction implies energy travel in two directions—first 

away from the source and then back to source after interaction with matter. The physical 

distinction is illustrated in Fig. 1.5 for a point receiver and point scatterer. This distinction is 

One-Way Diffraction 

Point 
Receiver 

Transmitter 

(a) 

Two-Way Diffraction 

Point 
Scatterer 

Transducer 

(b) 

Figure 1.5: (a) One-way diffraction with point receiver; (b) two-way diffraction with point 
scatterer. 



particularly important in ultrasonic reflection imaging because it is subject to mathematical 

interpretation. 

Specifically, some authors state that equations derived for one-way diffraction can 

be used to calculate two-way diffraction simply by doubling the distance between the source 

and scatterer in the one-way equations [11,33,52,56,67]. This claim is based on a mirror- 

image interpretation of two-way diffraction. On the other hand, some authors state that 

two-way diffraction is properly described by the square of Hi(p,z,u)) [18,29,64]. This 

claim is based on an interpretation of two-way diffraction as an autoconvolution. Both 

interpretations have merit and mathematical appeal. Because of this, closed-form spatially 

averaged equations applicable to both interpretations will be derived in later chapters. 

A note on terminology is required at this point. The physical distinction between 

one-way and two-way diffraction coupled with the mirror-image and autoconvolution in- 

terpretations of two-way diffraction leads to a rich but potentially confusing taxonomy. 

The confusion arises because the term two-way diffraction is imprecise; it may imply ei- 

ther the mirror-image or autoconvolution interpretation of two-way diffraction. Here, the 

term two-way diffraction is associated with the autoconvolution interpretation. The terms 

mirror-image diffraction and autoconvolution diffraction, although awkward, will be used 

when the mathematical interpretation of two-way diffraction requires specification. More 

will be said about mirror-image and autoconvolution diffraction in Section 1.8. 

1.5    Spatial Averaging 

The discussion up to this point has focused on fictitious point receivers and point scatterers. 

The receiving area of a real transducer, however, is finite, and real transducers are often 

referred to as finite receivers. Fig. 1.6 depicts more realistic scenarios for one-way and two- 

way ultrasonic diffraction. In the one-way case, an ultrasonic transducer emits energy and 

another transducer coaxially located with the transmitter some distance z away acts as a 

receiver. 
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Figure 1.6: (a) One-way diffraction with finite receiver; (b) two-way diffraction with finite 
reflecting disk. 
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The usual goal of one-way ultrasonic probing is to extract information about the 

medium between the transmitter and receiver. This information is encoded on the RF A- 

line. Recall that an A-line is the output voltage of the receiver and is illustrated in Fig. 1.1. 

The A-line is assumed to be a function of either the total pressure or spatially averaged 

pressure impinging on the face of the receiver [5,10,27,67]. Williams makes the case for 

total pressure, while Harris makes the case for spatially averaged pressure. In either case, 

total pressure is found by spatial integrating the incoming pressure field over the face of 

the receiving aperture; note that the receiving aperture is referred to as a measurement 

circle by Williams [66]. Spatially averaging consists of simply dividing the total pressure by 

the receiver area. Since spatial integration and spatial averaging differ only by a constant 

multiplicative factor, both can be said to give a relative quantitative estimate of one-way 

diffraction effects. 

Spatial averaging of one-way ultrasonic diffraction has been investigated exten- 

sively, and, numerous authors have used one-way results to explain two-way diffraction by 

invoking the mirror-image interpretation of reflection imaging. Chapter 4 extends exist- 

ing theory by presenting new derivations of time-domain and frequency-domain results for 

one-way diffraction. 

In the autoconvolution interpretation of reflection imaging, diffraction occurs dur- 

ing transmission and reflection. In this case, total pressure is found by spatial integrating 

the incoming (reflected) pressure field over the receiving aperture; the reflected pressure, in 

turn, is found by spatially integrating the outgoing (transmitted) pressure field over some 

suitably chosen reflecting plane [9,18]. Averaging consists of dividing by the area of the 

receiving aperture. 

Spatial averaging over a volume is more realistic because, at any given instant 

after insonification, acoustic energy is reflected back from a mass or three-dimensional 

(3-D) volume of material rather than from a disk. Thus, ultrasonic reflection imaging is a 

volumetric or 3-D imaging modality. However, the only observation available in non-Doppler 

reflection imaging is a set of A-lines, that is, one-dimensional (1-D) time-domain voltage 

11 



signals. In essence, an A-line contains information about a 3-D volume of material and 

that information has been encoded via spatial averaging onto a 1-D time-domain waveform. 

Averaging over a volume may be more realistic, but is also more difficult to compute. Thus, 

spatial averaging over disks is quite common in the literature on ultrasound. 

Spatially averaged autoconvolution diffraction has not been investigated as exten- 

sively as spatially averaged one-way diffraction, [9] being a notable exception. Chapter 5 

attacks autoconvolution diffraction with new tactics; there it is empirically shown that 

closed-form results derived by Wolf in 1951 for optical diffraction can be used to estimate a 

spatially averaged form of autoconvolution diffraction in ultrasonic reflection imaging. This 

new but relatively straightforward empirical proof is based on the Cauchy-Schwarz inequal- 

ity for integrals [48, pp. 177-178] and an ad hoc assumption concerning its interpretation. 

Despite the ad hoc and empirical development, useful results are obtained. 

1.6    The Need for Diffraction Correction 

Terms such as spatially averaged, two-way, and pulsed-mode have been defined and their 

importance explained in the context of ultrasound. The phenomenon of diffraction from 

a circular aperture and its applicability to ultrasonic reflection imaging have been consid- 

ered. The question of why a century-old problem is being investigated again remains. The 

inescapably long answer explains the need to correct for ultrasonic diffraction and can be 

found in an area of ultrasonic research known as tissue characterization [17,39]. 

Tissue characterization has been called the Holy Grail of ultrasound [50]. Radi- 

ologists, when limited to diagnosis via ultrasound, are already very good at differentiating 

between healthy and diseased tissue. They are not yet as adept at characterizing or classi- 

fying the diseased tissue when presented with the same B-mode images. One of the reasons 

radiologists are not adept at classifying diseased tissue is their almost exclusive reliance 

on B-mode images when limited to ultrasonic diagnoses. Recall, B-mode images are con- 

structed from low-frequency envelope-detected data. 
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Figure 1.7: Tissue characterization. 

Thus, a radiologist examining a B-mode image does not see all the data; he or she 

is making a radiological diagnosis based primarily on low-frequency envelope-detected data. 

Any potentially important diagnostic information encoded on the high-frequency RF data 

is lost as a result of envelope detection. Thus, biopsy, an invasive and expensive procedure, 

remains the gold standard for tissue characterization. 

Researchers in ultrasonic tissue characterization are trying to avoid invasive and ex- 

pensive biopsy procedures by giving radiologists new tools and methods to make reliable tis- 

sue classifications based solely on ultrasound data. And many methods of tissue character- 

ization involve spectral analysis of RF data [20,58]. Tissue characterization based on spec- 

tral analysis combines diagnostic information from low-frequency envelope-detected data— 

B-mode images—with additional information available from the high-frequency data—RF 

A-lines. Advanced digital signal processing offers many methods of obtaining this additional 

information from the high-frequency data. Fig. 1.7 illustrates a notional example. For sim- 

plicity, only one A-line is considered. The figure shows three layers of tissue and the RF 

A-line obtained by probing the layers with a piston transducer operating in pulsed-mode. 
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A measure of the average or dominant frequency contained in the RF A-line— 

its spectral centroid [20]—can be obtained via short-time Fourier processing. A notional 

spectral centroid is shown in the figure. The spectral centroid varies in some quantitative 

fashion that correlates, at least theoretically, with the type of tissue being probed. This the- 

oretical correlation, however, is complicated by diffraction effects. Specifically, the spectral 

centroid is based on high-frequency RF data, but diffraction, as will be shown, attenuates 

high-frequency information. Thus, the spectral centroid will be biased by high-frequency 

attenuation unless the diffraction effects are corrected in some fashion. Furthermore, physi- 

cally meaningful correction of two-way diffraction effects for finite receivers requires spatial 

averaging. 

Derivation of a spatially averaged autoconvolution diffraction correction using the 

arccos diffraction formulation [59] was attempted but proved too difficult. This difficulty 

prompted our investigation of the Lommel diffraction formulation, a solution to the century- 

old problem of monochromatic diffraction from a circular aperture. As will be shown, 

deriving and implementing a spatially averaged autoconvolution diffraction correction turns 

out to be fairly straightforward once the Fourier equivalence of the arccos and Lommel 

diffraction formulations is established. 

In summary, diffraction attenuates high-frequency information and biases tissue 

characterization; hence, a correction is required to remove the bias caused by diffraction. We 

derive equations describing diffraction effects as a set of time/depth-varying filters. These 

diffraction filters are simply inverted to obtain diffraction corrections. 

A note on terminology is required at this point. Note that the term diffraction 

correction can be interpreted as the total removal of unwanted diffraction effects. No such 

claim is made for this process. The time-varying filters derived here simply compensate for 

depth-dependent high-frequency attenuation caused by diffraction, and the term correction 

is used loosely. Furthermore, the distinction between diffraction effects and diffraction 

correction is simply a matter of inversion, and the two terms are often used interchangeably 

in the literature on diffraction correction. The same semantic liberty is taken here. 
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1.7 Experimental Investigation 

Up to this point, only theoretical results have been promised. While it is true that theory- 

precedes application, it is also true that application of theory is better sooner than later. 

Thus, an aspect of the unified diffraction theory developed here is investigated experimen- 

tally in Chapter 6. Specifically, autoconvolution diffraction corrections will be implemented 

with time-varying filters, and diffraction-corrected B-mode images will be reconstructed 

using a short-time Fourier analysis/synthesis algorithm known as the weighted overlap-add 

(WOLA) method. The raw and diffraction-corrected images will be compared only qualita- 

tively. Differences between raw and corrected RF data will be analyzed quantitatively via 

the spectral centroids described in the previous section. 

Three points concerning the experiments require discussion. First, it must be em- 

phasized that the experiments were not designed to validate the theory in any authoritative 

fashion. Rather, they were designed to gauge the feasibility of the proposed autoconvolution 

diffraction correction. Second, the diffraction-corrected images are an important contribu- 

tion of this work. Although the differences between the raw and diffraction-corrected images 

are subtle, they reveal that diffraction correction appears to have a more pronounced effect 

on RF data than on envelope-detected data. Finally and most importantly, the exper- 

iments are not to be considered, in any way, clinical validation of the proposed 

diffraction corrections. 

1.8 Analytical Investigation 

A theory is gauged by its simplicity, practicality, and predictive power. Predictions based on 

the proposed unified theory are investigated analytically in Chapter 7. In particular, predic- 

tions based on the mirror-image and autoconvolution interpretations of two-way diffraction 

are compared. Until now, the two interpretations have not been quantitatively compared 

because closed-form expressions allowing comparison did not exist. The closed-form equa- 

tions developed as part of the proposed unified theory permit a new quantitative analysis of 
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the two interpretations. This quantitative comparison reveals that these two interpretations 

of two-way diffraction are similar in much narrower sense than was previously realized. 

1.9    Mathematical Definitions 

The development of a unified theory of spatially averaged diffraction corrections for piston 

transducers is made possible, in part, by a group of related mathematical functions which 

will surface repeatedly in later chapters. Following Wolf [68], u and v are real variables, n 

and m are non-negative integers, and Jn(u) is a Bessel function of the first kind of order n. 

Un and Vn are Lommel functions of two variables and are defined by summations of Bessel 

functions: 

oo . „ 

s=0 V 

Vr„(«,«)=X;(-l)*(-) Jn+2s(v). (1-3) 
s=0 

Because they are infinite summations, the Lommel functions can be computed only approx- 

imately, and these approximations can be programmed either recursively [25,68] or directly 

in a do-loop. Do-loops were used in this research. 

Un(u,v) converges slowly for when u/v > 1, and so the following formulae from 

Gray and Mathews [25, p. 185, Eq. 20] will prove useful: 

1 
U2n+i(u,v) + V-2n+i(u,v) = (-l)"sin , 

-U2n{u,v)   +   V-2n(u,v) = (-l)nCOS ( - 

u + — 
u 

:      v2 

u + — 
u 

(1.4a) 

(1.4b) 

Special-case formulae for u/v = 1 can be found in Gray and Mathews. A group of related 

functions will also be encountered: 

Zn(u,v) = (-l)sUn+2s(u,v), (1.5) 

"u\n+2s 

s=0 
= ^(-l)s(S + l)Q) Jn+2s(v); 
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Zn(u,v) was encountered in the course of this work, and it is discussed in Appendix A. 

More on details on Wn(u,v),Xn(u,v), and Yn(u,v) and their origins and applications can 

be found in [68,69]. Finally, the polynomials 

2m 

Pn,2m(v) = ^2{-l)SJn+2(v)Jn+2m-s(v) 
s=0 

Qlm = Po,2m(v) + Pl,2m{v) 

(1.9) 

(1.10) 

will be encountered. 

At this point, an important historical disclaimer is required. With the exception 

perhaps of Zn(u,v), all functions introduced in this section are due to Lommel, Hopkins, 

or Wolf. See Watson [63], Gray and Mathews [25], and Wolf [68, 69] for more details. 

Indeed, the closed-form equations derived herein were made possible, in large part, by 

results presented in Wolf's 1951 paper on diffraction; the importance of Wolf's results to 

this work cannot be overstated. 

1.10    Scope and Assumptions 

This section describes the scope of the proposed work and explains some choices and as- 

sumptions that have been made.  More details will be discussed as the need arises.  This 
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research focuses on A-mode and B-mode biomedical ultrasonic reflection imaging using 

pulse-echo techniques. M-mode, pulsed-Doppler, color-flow, tomographic, and more exotic 

ultrasonic imaging modalities are not discussed. In short, the scope of this research is lim- 

ited to non-Doppler pulse-echo reflection imaging. Ultrasound experiments were conducted 

with piston transducers which were assumed to be infinitely baffled. The term infinitely 

baffled means that the piezoelectric membrane of the piston transducer is restrained by an 

infinitely rigid wall [33,44]. Array transducers are not considered. More will be said about 

equipment in Chapter 6. 

Scalar diffraction theory is assumed throughout. In particular, Rayleigh-Sommerfeld 

diffraction theory [24] forms the mathematical foundation for all the results derived. Fur- 

thermore, an infinitely baffled ideal transducer with infinite bandwidth or Dirac response 

is assumed in the theoretical development [10]. Homogeneity (as in the homogeneous wave 

equation of Eq. 1.1) and the first Born approximation, which implies no multiple scattering, 

are assumed [33]. In short, we assume ideal ultrasonic propagation in a uniform, isotropic, 

homogeneous and weakly scattering medium which supports only compressional waves [52]. 

These assumptions concerning ultrasonic diffraction and propagation are ubiquitous in the 

literature and should cause no alarm. 

As was already mentioned numerous times, diffraction can be modeled as a time- 

varying filter. Practical time-varying filtering requires a joint time-frequency representa- 

tion that is invertible and realizable with undue computational burden. Most joint time- 

frequency representations in the current literature can be conveniently classified as linear, 

bilinear/quadratic, or non-linear [28], and only a few meet the requirements just described. 

Indeed, non-linear representations are generally not invertible, and they were not consid- 

ered. Bilinear representations were considered but abandoned because they are not easily 

invertible from a computational or algorithmic perspective. 

Ultimately, the short-time Fourier transform was chosen because it is linear and 

invertible, well-documented [43], and easily interpreted. The short-time Fourier transform 

is viewed here as a tool, not a subject of study in and of itself. Hence, no tutorial material 
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on the subject is included. However, references to tutorial material and seminal works on 

the short-time Fourier transform and short-time Fourier techniques are included. 

1.11    Document Organization and Preview 

Recall the three theoretical goals of this research. The immediate goal is to derive a closed- 

form spatially averaged two-way diffraction correction for a focused piston transducer op- 

erating in pulsed-mode. The second goal is to unify previously disjoint and limited theory 

on spatially averaged diffraction corrections for piston transducers with coherent and gen- 

eralized results. The third goal is to advance the scientific community's understanding of 

diffraction from a circular aperture, a ubiquitous and fundamental physical problem, with 

new results and insights. The document is organized to support achievement of these goals. 

Chapter 2 reviews relevant literature and gives more background material. Chap- 

ter 3 is probably the most important chapter in the document for three reasons. First, it 

introduces and compares the arccos and Lommel diffraction formulations. Second, Chap- 

ter 3 establishes and verifies the Fourier equivalence of the arccos and Lommel diffraction 

formulations as an approximate Fourier transform pair for both focused and unfocused pis- 

ton transducers. In short, the two diffraction formulations are connected in a new way 

thus providing fresh insight into diffraction from a circular aperture. Third, the new re- 

sults and insights developed in Chapter 3 form the mathematical foundation for a unified 

theory of spatially averaged diffraction corrections for an infinitely baffled ultrasonic piston 

transducer operating in pulsed mode. 

The unified theory is, in essence, a frequency-domain formalism for spatially av- 

eraged diffraction correction. As such, it is a frequency-domain alternative to the well- 

established time-domain or impulse-response formalism for spatially averaged diffraction 

correction [10,52,59]. The theory is based on the hypothesis that spatial averaging in the 

time domain is the same as spatial averaging in the frequency domain for any diffraction 

problem that can modeled with the Rayleigh-Sommerfeld diffraction integral [24]. 
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One-way spatially averaged diffraction effects are derived in Chapter 4. The in- 

sight gained in Chapter 3 leads to a new derivation of closed-form spatially averaged time- 

domain expressions based on the arccos diffraction formulation [10]. The derivation relates 

ultrasonic and optical diffraction in a unique way and thus provides a different perspec- 

tive on diffraction from a circular aperture. In addition to this novel derivation, two new 

closed-form frequency-domain expressions are derived by spatially averaging the Lommel 

diffraction formulation. 

Numerical results obtained from the time-domain and frequency-domain expres- 

sions are analyzed. The Fourier equivalence of the arccos and Lommel diffraction for- 

mulations for point receivers predicts that results obtained from the spatially averaged 

arccos-based results should be approximately equal to results obtained by inverse Fourier 

transforming the Lommel-based expressions; in short, the two formulations should be equiv- 

alent in a Fourier sense. This prediction is verified, and the success of the theory in the 

case of one-way diffraction with point and finite receivers is cause for optimism that theory 

will also hold for spatially averaged autoconvolution diffraction. 

Spatial averaging of two-way diffraction is considered in Chapter 5. Specifically, 

a set of equations derived for optical diffraction is applied to the autoconvolution interpre- 

tation of two-way diffraction in ultrasound. The equations, which are based on Lommel's 

treatment of Fresnel diffraction from a circular aperture, are completely general in terms 

of area and focusing. Results obtained by numerical integration of the arccos diffraction 

formulation are compared to results obtained from the closed-form Lommel-based equa- 

tions. As in the one-way case, the Fourier equivalence of the arccos and Lommel diffraction 

formulations predicts that the two sets of results should be equivalent in a Fourier sense. 

The prediction is verified. 

Thus, Chapters 3-5 show that the Fourier equivalence of the arccos and Lommel 

diffraction formulations leads to a unified theory of spatially averaged diffraction corrections 

for an infinitely baffled ultrasonic piston transducer operating in pulsed mode. The theory 

is unified in the sense that the Fourier equivalence of the two formulations applies to both 
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one-way and two-way ultrasonic diffraction with piston receivers and reflecting disks of any 

size. The theory applies to unfocused and focused transducers and is used to derive closed- 

form results for unfocused one-way diffraction and focused and unfocused autoconvolution 

diffraction. Although the theory applies to spatially averaged one-way diffraction from a 

focused piston transducer, no closed-form results are derived for this case. 

An aspect of the unified theory, autoconvolution diffraction, is experimentally 

investigated in Chapter 6. Diffraction corrections are implemented as time-varying filters, 

and ultrasonic data obtained from laboratory experiments are corrected using a short-time 

Fourier technique known as the weighted overlap-add method. The raw and corrected RF 

data are analyzed using spectral centroids, and B-mode images are reconstructed from the 

diffraction-corrected data. 

Chapter 7 advances understanding of diffraction from a circular aperture and fur- 

ther unifies and validates the proposed spatially averaged diffraction theory by providing an 

original quantitative comparison of the mirror-image and autoconvolution interpretations 

of ultrasonic reflection imaging. Chapter 7 also presents a brief analysis of linear models 

of ultrasound. The last chapter states conclusions and makes recommendations for further 

study. It also compares the work presented in this document with work presented elsewhere 

and, thus, puts this research in perspective. Numerous computational issues arise, and 

these are discussed where appropriate. Finally, Appendix A contains two lemmas helpful 

in deriving one-way spatially averaged diffraction effects. 

1.12    Criticism and Counter 

Those familiar with this area of research may have two obvious and immediate objections 

to the unified theory proposed herein. The first objection is that the theory applies only to 

piston transducers which are the exception rather than the rule in ultrasound. The second 

objection is that the proposed unified theory will suffer from Gibb's phenomenon. These 

objections must be refuted. 
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The first objection is refuted with a short five point rebuttal. First, the hypothesis 

that spatial averaging is the same in the time and frequency domains is general because 

it holds for any transducer geometry. Second, closed-form spatially averaged solutions for 

piston transducer are worthwhile in and of themselves and in terms of the theoretical insight 

gained by deriving them. Third, results describing diffraction from piston transducers 

are qualitatively and quantitatively useful in describing diffraction from other transducers 

[3,12]. Fourth, the closed-form solutions derived herein have potential application in other 

areas, such as acoustics, electromagnetics, and non-destructive testing. Finally, piston 

transducers remain an economically viable product [46]. Thus, the proposed theory should 

be of theoretical and practical interest. 

Refuting the second objection requires a little explanation. The proposed theory 

is a frequency-domain formalism based on the Lommel diffraction formulation and, as such, 

serves as an alternative to the well-established time-domain or impulse-response formalism 

based on the arccos diffraction formulation [10,59]. Thus, we are primarily interested in 

frequency-domain results, particularly for spatially averaged diffraction effects. 

To establish the theory, we assume impulse excitation of an infinitely baffled pis- 

ton transducer that has a Dirac response (Section 1.10). To validate the theory, we in- 

verse Fourier transform frequency-domain results and compare them with with results com- 

puted using the impulse-response formalism. However, results computed with the impulse- 

response formalism have finite support in the time domain [10,59]. Thus, an immediate 

criticism is that the proposed unified theory will suffer from Gibb's phenomenon [70] be- 

cause an infinite bandwidth can never be adequately sampled. The criticism is valid for 

theoretically ideal transducers; however, real transducers are band-limited. Thus, the pro- 

posed theory will be of interest and value if it can be easily and accurately computed across 

bandwidths representative of real transducers. We will show that it can. 
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Chapter 2 

Literature Review 

This chapter reviews relevant literature on ultrasonic reflection imaging, diffraction from 

a circular aperture, the arccos and Lommel diffraction formulations, ultrasonic diffraction, 

short-time Fourier techniques, and time-varying filters. Literature on other topics, such as 

linear models of ultrasonic reflection imaging and the mirror-image and autoconvolution 

interpretations of ultrasound, will be considered in more detail in later chapters. A detailed 

discussion of how this research differs from previous research would make for difficult reading 

at this point. So a comparative literature review is postponed until Chapter 8 where one is 

combined with a discussion of results. 

2.1    Ultrasonic Reflection Imaging 

Descriptions of ultrasonic reflection imaging are available from many sources. Shung's 

treatment [57] includes sections on acoustic propagation and diagnostic methods . Macovski 

devotes two chapters to biomedical ultrasound in his text on medical imaging [40], one each 

on ultrasonic imaging theory and array transducers. Macovski's development is based on 

linear system theory and will appeal to electrical engineers, while Shung's is more relevant to 

mechanical engineers. Thijssen's presentation [61] on ultrasonic reflection imaging focuses 

on texture analysis and image processing but also provides a good introduction to basic 
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ultrasound. Finally, the chapter on ultrasound by Bamber and Tristam in [4] covers a broad 

range of ultrasound topics by emphasizing results and applications rather than mathematical 

development. Taken together, these four references provide a fairly thorough introduction to 

ultrasonic reflection imaging and simultaneously point the way to more advanced references. 

2.2    Diffraction from a Circular Aperture 

During his investigation of optical diffraction from a circular aperture in the late 1800's, 

E. Lommel developed a mathematical description of diffraction which is called here the 

Lommel diffraction formulation [68]; the description includes two celebrated functions which 

now bear Lommel's name. After its publication in 1885, the Lommel functions caught the 

attention of the mathematical community. Much of Lommel's original work was redone by 

Gray and Mathews [25] in the early 1920's, and Watson [63] investigated Lommel functions 

from a mathematical standpoint at about the same time as Gray and Mathews. In short, 

the mathematical community refined the Lommel diffraction formulation. 

The ultrasound community appears to have become interested in the Lommel 

diffraction formulation in the late 1940's when Huntington, et al. [30] mentioned it in a 

paper on ultrasound delay lines and spatially averaged diffraction effects. Eight years later, 

Seki, et al. [56] published a paper on Lommel functions and diffraction effects in the case of 

monochromatic excitation of a piston transducer which they modeled as a circular aperture. 

In the early 1950's, the ultrasound community began developing pulse-echo techniques, and 

the monochromatic Lommel diffraction formulation was applied [47] in this new area of 

ultrasound for a number of years. What was needed, however, was a closed-form time- 

domain solution. 

This solution was first derived by Oberhettinger in 1961 [44], and it is called here 

the arccos diffraction formulation. His derivation is an analytical one based on Bessel theory 

and the Laplace transform. A decade later, Stepanishen re-derived the arccos diffraction 

formulation using arguments from physics and geometry [59]. Both derivations model the 
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piston transducer as a circular aperture. In 1976, Penttinen and Luukkala [49] derived 

a focused version of the arccos diffraction formulation. Five years later, Arditi, et al. [2] 

extended Penttinen and Luukkala's work by describing transient fields of concave annular 

arrays. In that same year, Harris published a comprehensive review of the development 

of diffraction theory for a pulsed piston transducer [26]; his review includes the work of 

Oberhettinger, Stepanishen, and others. After the 1980's, research shifted from the arccos 

diffraction formulation toward spatially averaged diffraction corrections. 

2.3    Spatially Averaged Diffraction Corrections 

The ultrasound community has been researching spatially averaged diffraction corrections 

for piston transducers for over 50 years. The early work of Huntington, et al. has already 

been mentioned [30], and research in this area was pursued well into the 1950's. Williams 

derived one of the first closed-form diffraction corrections for ultrasound [66] in 1951. His 

derivation, based on one-way diffraction, applies to a receiver centered in the beam of a 

transmitter and having an area equal to that of the transmitter. In 1958, Bass [5] derived 

a closed-form result which was slightly more compact than the result derived by Williams. 

There was also interest in spatially averaged diffraction effects outside of the ultra- 

sound community. In the same year Williams published his closed-form diffraction correc- 

tion, Wolf extended Lommel's treatment of Fresnel diffraction and derived expressions "... 

for the fraction of the total illumination present within certain regions in receiving planes 

near focus of spherical waves issuing from a circular aperture ... [68]." In short, Wolf used 

the Lommel diffraction formulation to find the spatially integrated intensity impinging on 

a disk coaxially located some distance z from the aperture. Wolf placed no restrictions on 

the area of the illuminated disk, and his results are applicable in spatially averaging both 

one-way and two-way diffraction effects in ultrasound (Section 1.5). 

In the 1960's, the ultrasound community focused its attention on the arccos diffrac- 

tion formulation and its theoretical and experimental validity as a convolution integral [26]. 
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Work on spatially averaged diffraction corrections resumed in the 1970's when Williams 

published a paper [67] extending Bass's 1958 closed-form one-way diffraction correction to 

the case of a receiver having an area different from that of the transmitter. With computers 

becoming more accessible in the 1970's, researchers began to explore the validity and utility 

of the closed-form diffraction corrections derived in the previous two decades. For example, 

Khimunin [32] and Benson and Kiyohara [7] computed one-way diffraction corrections nu- 

merically and presented their results in tabular form. In fact, Benson and Kiyohara based 

their algorithms on Seki's 1956 paper. 

In 1974, Rogers and Van Buren [54] simplified Bass's 1958 result by spatially 

integrating the Lommel diffraction formulation. Four years later, Rhyne [52] derived a 

closed-form one-way diffraction correction by spatially integrating the arccos diffraction 

formulation; he presented closed-form results in both the time and frequency domains. 

The results derived in [54] and [52] are limited to transmitters and receivers having equal 

areas. In 1981, Harris discussed spatially averaged diffraction corrections for the case of 

arbitrary velocity distributions [27]. Two years later, Kuc and Regula computed spatially 

intrgrated diffraction effects via numerical integration and investigated their impact on 

spectral estimates [37] based on ultrasonic data. It is critical to note that all the authors 

mentioned to this point invoked the mirror-image interpretation of two-way diffraction and 

applied one-way results to two-way diffraction. 

In 1983 and 1984, Fink, et al. published papers on diffraction effects in pulse-echo 

measurements. Their work was new in that they addressed the autoconvolution interpre- 

tation of two-way diffraction and introduced spectral centroids as a measure of diffraction 

effects for focused and unfocused piston transducers [19,20]. In 1988, Cassereau, et al. [10] 

generalized Rhyne's one-way results [52] to transmitters and receivers having unequal ar- 

eas. In the 1990's, Fink and Cardoso [9] derived a closed-form autoconvolution diffraction 

correction via spatial integration of a joint time-frequency representation. Finally, Chen et 

al. derived a spatially integrated mirror-image diffraction correction based on the Lommel 

diffraction formulation for the case of a focused piston transducer [11] in 1994. 
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2.4    Short-Time Fourier Techniques 

A stationary signal is one with time-independent spectral content; a non-stationary signal 

is one with time-varying spectral content [53]. Traditional Fourier techniques characterize 

stationary signals in either the time domain or frequency domain; joint time-frequency 

information is not readily available in either domain. In general, traditional techniques 

are not well suited to determining the time-varying spectra of non-stationary signals. The 

theory of joint time-frequency representations was developed to extend the applicability 

of traditional Fourier techniques to non-stationary signals. Hlawatsch and Boudreaux- 

Bartels [28] wrote an excellent tutorial on joint time-frequency representations, and, as 

the authors point out, researchers in signal processing have concocted a plethora of joint 

time-frequency representations to analyze non-stationary signals. 

The joint time-frequency representation that is most relevant to this research is the 

short-time Fourier transform (STFT), which Gabor proposed in 1946 [28]. Since then, the 

STFT has been used extensively in speech processing, and researchers in speech processing 

have developed many useful techniques based on the STFT. The chapter on short-time 

Fourier analysis in [51] is an older reference but remains one of the best introductions to 

the subject. More recent work on short-time Fourier transform and related techniques can 

be found in [43], Lim's 1988 text on advanced signal processing [38], and Oppenheim and 

Schafer's text on signal processing [45]. 

Filtering of stationary signals is relatively straightforward because their spectral 

content is independent of time. On the other hand, filtering non-stationary signals is gen- 

erally more difficult because their spectral content varies with time. This type of filtering 

requires time-varying filters which may implemented using short-time Fourier techniques. 

Thus, these techniques find wide application in time-varying filtering. 

Since time-varying filters have been researched at least since the 1950's, a great 

deal of discussion of the theory can be found in the signal processing literature. Bello 

characterized randomly time-variant linear channels [6] using time-varying filters, and his 
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work provides a good introduction to the topic. During the 1960's and 1970's, researchers 

in the speech community made great strides in time-variant filtering specifically because of 

the STFT and its linearity and invertibilty. See Rabiner and Schäfer [51], Lim [38], and 

Oppenheim and Schafer [45] and the numerous references contained therein for more details. 

The time-varying filtering done in this work is based on the weighted overlap-add method 

of short-time Fourier analysis/synthesis developed by Crochiere in the late 1970's while he 

was working with Bell Laboratories [15]. 

2.5 Short-Time Fourier Techniques in Ultrasound 

Short-time Fourier techniques were applied in ultrasound by Salomonsson and Bjökman [55] 

and Claesson and Salomonsson [13]. In [55], the authors discuss a parametric time-varying 

network to separate attenuation and texture due to tissue, while in [13] the authors used 

the STFT to compensate for frequency- and depth-dependent attenuation in ultrasound sig- 

nals. More recently, Daponte et al. [16] compared the STFT with other joint time-frequency 

representations when measuring the thickness of thin multilayer structures. Outside the 

biomedical community, Malik applied different joint time-frequency representations, includ- 

ing the STFT, to the problem of ultrasonic non-destructive testing [41]. 

Much of the ultrasound literature in which the STFT is applied is in the area of 

Doppler signal processing. A recent example is [62] in which the authors compare Doppler 

signal analysis techniques in the measurement of velocity, turbulence, and vortices; among 

the methods investigated was the STFT. Important work on short-time Fourier techniques 

in ultrasound was done by Altes and Faust [1] and Fink, et al. [19,20]. In [1], Altes and Faust 

used short-time Fourier analysis to provide a unified framework for ultrasonic diagnosis. 

2.6 Chapter Summary 

This chapter reviewed relevant literature on ultrasonic reflection imaging, diffraction from 

a circular aperture, the arccos and Lommel diffraction formulations, ultrasonic diffraction, 
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short-time Fourier techniques, and time-varying filters. A detailed discussion of how this 

research differs from previous research was not presented. A comparative literature review 

will be combined with a discussion of results in Chapter 8. 
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Chapter 3 

The Arccos and Lommel 

Diffraction Formulations: An 

Approximate Fourier Transform 

Pair 

This chapter establishes and verifies the Fourier equivalence of the arccos and Lommel 

diffraction formulations as an approximate Fourier transform pair. This relationship is 

important because it serves as the mathematical foundation for a proposed unified theory 

of spatially averaged diffraction corrections for ultrasonic piston transducers. Although the 

development is cast in terms of ultrasonic reflection imaging, the results are applicable to 

any physical problem involving diffraction from a circular aperture. 

First, derivations of the arccos and Lommel diffraction formulations are outlined, 

and the two formulations are compared. The reader is referred to Oberhettinger [44], 

Papoulis [48, pp. 329-331], Stepanishen [59] and Harris [26] for complete details on the 

derivations. Next, the notion of an approximate Fourier transform is introduced, and the two 

diffraction formulations are unified by rigorously demonstrating their Fourier equivalence as 
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Figure 3.1: Piston transducer and fictitious point receiver. 

an approximate Fourier transform pair. The Fourier equivalence is shown for both unfocused 

and focused piston transducers. The unfocused Lommel diffraction formulation is discussed 

first. 

3.1    The Lommel Diffraction Formulation 

Assuming monochromatic excitation of the unfocused transducer in Fig. 3.1, the distur- 

bance Hi (p, z, OJ) sensed by a fictitious point receiver located at some off-axis distance 

p = \fx2 + y2 can be written 

I    r           e-jkr 
Hi(p,z,w) = —       f(<r0) da0 (3.1) 

27r Juo r 

where a0 is the area of the transmitter (aperture) and r is the distance from an elemental 

area on the face of the transmitter to the point p. The subscript o denotes the source 

(z — 0) plane, while the subscript 1 denotes one-way propagation. The velocity distribution 

across the face of the transducer is f(a0) which is unity due to the assumption of spatial 

uniformity. 
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The disturbance Hi (p, z, u>) is known in the literature on ultrasound as the velocity- 

potential transfer function [49]. The meaning of the term will become clear in the remainder 

of the chapter. For now, it is sufficient to note that the term velocity-potential transfer 

function implies the existence of a velocity-potential impulse response [59]. The fundamental 

relationship between an impulse response and its transfer function as an exact Fourier 

transform pair is well known, and the relevance of this relationship to this chapter is obvious. 

As per convention, the time dependence of Hi(p,z,u) on eJ'wt is implied. The 

spatial wave number k is related to temporal frequency w via k = UJ/C Thus, the dependence 

of velocity-potential transfer function Hi(p,z,u) on u) is implicit in two ways. 

Eq. 3.1 represents the Rayleigh-Sommerfeld diffraction integral with an obliquity 

factor of unity [24] and is applicable to a infinitely baffled flat-faced transducer of any 

geometry [33] . The Fresnel approximation in conjunction with the circular symmetry of a 

piston transducer allows the velocity-potential transfer function Hi(p, z,ui) in Eq. 3.1 to be 

estimated: 

Hy{p>z,u>) = ~e~^z+^ [e~Jk^Jo i^P^j Po dpo (3.2) 

where p0 — y/x2 + y2 is the off-axis distance at the source plane and p — yjx2 + y2 is 

the off-axis distance at the observation plane [48, p. 330]. The "hat" notation (e. g. Hi) 

signifies that the result is an estimate. Note that Hi(p,z,u) in Eq. 3.2 is closely related to 

$P in [56] and is g(p,z) in [48, Eq. (3-52), p. 330] multiplied by j/k. Eq. 3.2 is the classic 

description of diffraction from a circular aperture [48]. 

A prominent and familiar feature of Fresnel diffraction is its interpretation as a 

convolution involving a quadratic phase term [22,48]. This feature is obscured in Eq. 3.2. 

However, if the singularity function, 

Pa(po) = < 
1,    p0 < a; 

(3.3) 

0,    p0> a 

is introduced in the integrand of Eq. 3.2 and the upper limit of integration changed to oo, 
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then Eq. 3.2 becomes 

Hxfaz,*) = \ e-M'+& jo°
0pa(Po)e-jkijo {^p)j Po dp0 (3.4) 

which may be interpreted as the Hankel transform of the product of the singularity function 

PaiPo) aQd a quadratic phase term. The convolution theorem for Hankel transforms allows 

Eq. 3.4 to be rewritten 

k [p      V  z )     3 
(3.5) 

where the convolution is with respect to kp/z. The familiar interpretation of Presnel diffrac- 

tion is made explicit in Eq. 3.5. 

Eq. 3.2 can be integrated numerically, but a closed-form expression would simplify 

matters. Eq. 3.2 can be put in closed form via Lommel functions. The closed-form result is 

H^zM = Ie-i(**+£+f) [Ux(u,v) +jU2(u,v)} (3.6) 

where the substitutions u = ka2/z and v = kap/z result in more compact notation. Eq. 3.6 

is the Lommel diffraction formulation for an unfocused piston transducer and is easily 

programmed because of its closed form. The Lommel functions of two variables, Un(u,v), 

were defined in Eq. 1.2. 

Seki, et al. [56] used a variant of Eq. 3.6 to calculate pressure as a function of 

depth z and off-axis distance p. The pressure p is related to the velocity-potential transfer 

function in the following manner, 

p(p, z, u, t) = ±gHi (p, Z, W)    dt (3.7) 

where Q is medium density. There is disagreement in the literature on sign convention, 

and ± in Eq. 3.7 captures this disagreement. The convention with the positive sign was 

chosen in this work. Thus, pressure can be obtained from Eq. 3.6 by multiplying by juge>ut. 

Maximum pressures (e^ut — 1) obtained from Eq. 3.6 are plotted in Fig. 3.2; the plots agree 

well with those in Seki's 1956 paper. 
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Figure 3.2: Pressures after Seki, et al. [56] via Eq. 3.6 

Three computational issues deserve mention here. First, the choice of Un(u,v) or 

Vn(u,v) in Eq. 1.4 depends on the ratio u/v. Second, Un(u,v) must be determined with 

sufficient accuracy; n > 52 was used in calculating the Bessel function Jn{x) in Eq. 1.2 

or Eq. 1.3. Calculating a Bessel function with this high an order may cause underflow on 

some machines. Third, on-axis (p = 0) values of Eq. 3.6 can be calculated via appropriate 

handling of the Lommel functions when v = 0 [63, p. 540], or they can be calculated from a 

separate formula which is easily derived by explicitly integrating Eq. 3.2 when p = 0. The 

latter method was used in our computations. 

3.2    The Arccos Diffraction Formulation 

The arccos diffraction formulation can be derived either analytically [44] or geometrically 

[59]. A modified version of Oberhettinger's analytical derivation [44] is outlined here because 

it leads to the realization that the arccos and Lommel diffraction formulations form an 

approximate Fourier transform pair.   Assuming the unfocused transducer in Fig. 3.1 is 
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excited by an impulse, the velocity-potential impulse response hi(p,z,t) associated with 

the fictitious point receiver located at p can be written 

1   r°° 
hi(p,z,t) = —        Hi(p,z,w) e3Ut dw, 

= ?-1{H1(p,z,u)} 

(3.8) 

where 9r_1 is the inverse Fourier transform. Thus, the velocity-potential impulse response 

in Eq. 3.8 is the inverse Fourier transform of velocity-potential transfer function Hi(p, z, u>) 

in Eq. 3.1. The term velocity-potential impulse response [59] comes from the fact that the 

pressure p(p, z, t) can be written in terms of a convolution of the piston velocity u(t) with 

the velocity potential impulse response hi (p, z, t), 

p(p,z,t) = g—u(t)*hi(p,z,t), (3.9) 

where the convolution is, as indicated, with respect to time. The meaning and significance of 

the terms velocity-potential impulse response and velocity-potential transfer function should 

now be clear. 

With a transformation from rectangular to polar coordinates—x = pcos((j)) and 

y = psin((/>)— the velocity potential transfer function Hi(p,z,u) in Eq. 3.1 becomes 

rlix    fa 

, cos ((/> - <j>0) + z2]   1/2 X 
/2TT    pa  ( 

J    I [p2 + pl-2pPo< 

exp [-jk (p2 + p2
0- 2pp0 cos (cf) - 4>0) + z2)) \ p0 dp0 d(j)0.    (3.10) 

/,o=0Po=0 

After several steps, Oberhettinger obtains exact expressions for hi(p,z,t) for two intervals. 

For p < a, 

hi(p,z,t) = < 

0, 

- arccos 
IT 

(ct)2-z2+p2-a2 

L2p((ct)2-z2)1/2 

o, 

ct < z; 

z <ct< R'; 

R' <ct< R; 

ct > R, 

(3-11) 
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and for p > a, 

0, 

h(p,z,t) = < arccos (ct)2-z2+p2-a 
2p( (ct)2-z2 y /2 

o, 

ct < R'; 

R' <ct< R; 

ct > R, 

(3.12) 

where R = y/z2 + (a- p)2 and R = ^ z2 + (a + p)2. Taken together, Eqs. 3.11 and 3.12 

represent the arccos diffraction formulation. Interpretations of the arccos diffraction formu- 

lation at the spatial singularity p = a can be found in the literature [10,26,59]. 

Note that Eq. 3.10 is the Rayleigh-Sommerfeld integral for diffraction from a piston 

transducer, and it led to the arccos diffraction formulation. On the other hand, Eq. 3.2 is the 

Presnel approximation to Eq. 3.10, and Eq. 3.2 led to the Lommel diffraction formulation. 

Clearly, the arccos and Lommel diffraction formulations are closely related; we will explore 

this relationship more fully in the next section. 

For now, we do well to describe the well-known behavior of the arccos diffraction 

formulation [59]. Fig. 3.3, which will be discussed in detail later, can be used as a visual 

aid. For a fixed depth z, the on-axis (p = 0) velocity-potential impulse response hi(p,z,t) 

is a rectangular pulse starting at t — z/c; its amplitude is c. As p increases, the start time 

of the pulse remains t = z/c but the trailing edge of the pulse moves closer to t = z/c. 

Simultaneously, the fall time of the trailing edge increases, and the trajectory of the fall 

is governed by the arccos term in Eq. 3.11. In short, the pulse-like nature of the impulse 

response gradually decays with increasing p. For p > a, the impulse response no longer 

resembles a rectangular pulse, and its maximum value is something less than c. In addition, 

its start time is delayed, and the delay is function of p. 

For a fixed off-axis distance p, the velocity potential impulse response hi(p,z,t) 

has the same general shape at any depth z but is compressed in time as z increases. 

The relationship can be quantified by expanding R' and R via binomial expansion, sub- 

tracting the smaller from the larger, and dividing for different values of z. The result 

is h\(p,z,t) = hi(p,z,zrt/z) for large z, where zr is some appropriately chosen reference 
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plane [10]. Researchers in wavelet theory might find this an interesting physical problem 

since time scaling arises in a natural fashion. 

3.3    Similarities and Differences 

At this point, the Lommel and arccos diffraction formulations may be compared. Sec- 

tion 3.1 showed that the Lommel diffraction formulation is a monochromatic frequency- 

domain expression based on the Presnel approximation to the Rayleigh-Sommerfeld integral 

of scalar diffraction theory. Hence, the derivation of Lommel diffraction formulation permits 

monochromatic diffraction from a circular aperture to be interpreted as a convolution in- 

volving a depth-dependent quadratic phase factor (Eq. 3.5). On the other hand, Section 3.2 

showed that the arccos diffraction formulation is a set of polychromatic time-domain ex- 

pressions based on the exact Rayleigh-Sommerfeld integral (with obliquity factor of unity). 

The arccos formulation permits impulsive diffraction from a circular aperture to be inter- 

preted in terms of a depth-dependent time-scaling operation. Thus, the two formulations 

are similar in that they both describe diffraction from a circular aperture, but they differ in 

derivation (Presnel vs. Rayleigh-Sommerfeld), realization (frequency vs. time domain) and 

interpretation (quadratic phase vs. time scaling). 

As just mentioned, the Lommel diffraction formulation is based on the Presnel 

approximation to the Rayleigh-Sommerfeld diffraction integral. The Fresnel region is often 

confused with the near field [22], and this confusion may lead to misinterpretation of our 

results. The following observations [22,24,48] are made to clear up the confusion and avoid 

misinterpretation. 

The Rayleigh-Sommerfeld region [22] consists of all points in front of the transducer 

(aperture). The Fresnel region [48] is that portion of the Rayleigh-Sommerfeld region in 

which the Fresnel approximation, 

25{a + p)*<\z3 = cz3/f, (3.13) 
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holds; A is wavelength and / is frequency in Eq. 3.13. We note that the Fresnel region 

extends to infinity. The requirement in Eq. 3.13 is overly stringent, and it can be shown [24] 

that the Fresnel approximation is in fact valid for points nearer the transducer (aperture). 

The Fraunhofer region, or far field, is that portion of the Fresnel region where 

the Fraunhofer approximation holds. Clearly, the Fresnel region contains the far field. We 

follow Gaskill [22] and regard the near field as the region lying between the transducer and 

the Fraunhofer region. Thus, the Lommel diffraction formulation and expressions based on 

it are valid in a good portion of the near field and all of the far field. In short, the Lommel 

diffraction formulation and expressions based on it are valid over a large portion of the half 

space in front of the transducer. 

One final point concerning near field and far field must be made. The very no- 

tion of a near field and far field is predicated on monochromatic excitation (Section 1.2). 

Specifically, the demarcation between the near field and far field for a piston transducer is 

Z = o?/\. Recall c = A/. Thus, if the excitation is pulsed, the notion of a near field and 

far field becomes complicated because each frequency in the pulse has an associated Z. For 

the purposes of this work, Z is simply the distance associated with the center frequency of 

the transducer. 

3.4    Fourier Equivalence 

The previous section taken at face value leads us to believe that the arccos and Lommel 

diffraction formulations are, for the most part, quite different. But when placed in the 

context of Fourier theory, the arccos and Lommel diffraction formulations are more similar 

than different. Specifically, their differences in terms of realization (time vs. frequency 

domain) and interpretation (quadratic phase vs. time scaling) become similarities in the 

context of Fourier theory. Furthermore, the derivation of the arccos diffraction formulation 

in Section 3.2 pointed to a close relationship between the arccos and Lommel diffraction 

formulations. Ultimately, their realization in conjugate domains (e. g.  time vs. frequency) 
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indicates a possible relationship as an exact Fourier transform pair. This possible Fourier 

relationship is made more probable by the fact that the interpretation (time scaling vs. 

quadratic phase) of the two formulations is related to the Fourier explanation of time- 

scaling as convolution involving quadratic phase terms [48]. 

Although the derivations of the arccos and Lommel diffraction formulations pointed 

to a close relationship between the two formulations, their derivations (Rayleigh-Sommerfeld 

vs Fresnel) are quite different. Thus, they cannot form an exact Fourier transform pair. 

Despite this, they may form an "approximate" Fourier transform pair. This section intro- 

duces the notion of an approximate Fourier transform pair and rigorously demonstrates the 

Fourier equivalence of the arccos and Lommel diffraction formulations as an approximate 

Fourier transform pair. 

Consider a function f(t) that has an exact Fourier transform F(u)). Mathemati- 

cally, 

3-{/(«)} = F(u)       and       /(*) = 3"1 {F(w)}, (3.14) 

where IF and S1--1 represent the Fourier transform and inverse Fourier transform operations, 

respectively. Thus, f(t) and F(co) form a Fourier transform pair exactly. The notion of 

an exact Fourier time-frequency pair has been recognized in the literature on acoustics and 

ultrasound for decades [42,49]. 

The notion of approximate Fourier transform pair is helpful when derivation of an 

exact Fourier transform pair is too difficult or when it is sufficient to have a rough idea of 

the Fourier relationship between /(£) and F(w). Mathematically, 

?{/(*)} ^F(c)       and       /(i)«?-1^)}, (3.15) 

and it can be concluded that f(t) sa /(£) where f(t) and F(u) are estimates of f(t) and 

F(UJ), respectively. Thus, f(t) and F(u) form a Fourier transform pair approximately. 

Consider again Eq. 3.8, the general form of the arccos diffraction formulation. 

In this equation, the velocity-potential impulse response hi(p,z,t) is the inverse Fourier 
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transform of the velocity-potential transfer function Hi(p,z,ui), and the exact form of 

Hi (p, z, u) is unknown. However, a closed-form estimate or approximation is known, namely 

H\(p,z,u)). Thus, we may write 

MP,-M)=?
_1

{£I(P,*,ü/)}. (3-16) 

where hi(p,z,t) is an estimate of the impulse response predicted by the arccos diffraction 

formulation. In short, we claim that the arccos and Lommel diffraction formulations form 

an approximate Fourier transform pair: 

9-{Mp,*,t)} «ffi(p,*,u;)- (3-17) 

The claim is verified numerically in the next section. 

At this point, a discussion of Gibb's phenomenon [70] and its impact on this work 

is required. Under the stated assumptions (Section 1.10) and for practical geometries, 

impulse responses computed using the arccos diffraction formulation have compact support 

in the time domain; consequently, their Fourier transforms have infinite bandwidth in the 

frequency domain. In practice, the Lommel diffraction formulation can be sampled only over 

some finite bandwidth; consequently, impulse responses based on the Lommel diffraction 

formulation will suffer from Gibb's phenomenon. 

As a result, we expect that Lommel-based results will fail to capture temporal 

discontinuities and will simultaneously exhibit ringing in the neighborhood of any temporal 

discontinuities. The degree of failure and extent of ringing are functions of the sampling 

rate; higher sampling rates will capture temporal discontinuities more faithfully but si- 

multaneously introduce more ringing. In short, impulse responses based on the Lommel 

diffraction formulation and Eq. 3.16 can never show exact agreement with those based on 

the arccos diffraction formulation in Eqs. 3.11 and 3.12. 

The complication just discussed is analogous to the complication encountered in 

filter design where the desired magnitude/phase response is required to have a discontinuity 

in the frequency domain [70]. In this case, the desired impulse response has infinite temporal 
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duration. In practice, however, the filter can be sampled only over some finite time duration. 

Consequently, the realizable filter will exhibit Gibb's phenomenon in the frequency domain. 

Filter designers resort to windowing to reduce the effects of Gibb's phenomenon. We will 

do the same when necessary. 

3.5    Verification 

The Fourier equivalence of the arccos and Lommel diffraction formulations as an approxi- 

mate Fourier transform pair can be numerically verified by (i) computing discrete Fourier co- 

efficients using Eq. 3.6, (ii) inverse Fourier transforming these coefficients, and (iii) compar- 

ing the results against results obtained from the arccos diffraction formulation in Eqs. 3.11 

and Eq. 3.12. Computing discrete Fourier coefficients using Eq. 3.6 is justified by the fact 

that k = Lü/c. 

The Lommel diffraction formulation (Eq. 3.6) was used in conjunction with Eq. 3.16 

to estimate hi(p,z,t) for three off-axis positions at two depths: z = 3 cm and z = 9 cm. 

The speed of sound was set at c = 1540 m/s, and the diameter of the piston was set at 

2a = 13 mm. We reiterate that the transducer was assumed to have an infinitely broad- 

band or Dirac response, and the excitation was assumed to be an impulse. The sampling 

frequency was set at fs = 36 MHz; thus, the Nyquist frequency was 18 MHz. 

Note the sampling rate is consistent with 2X oversampling of a real 2.25-MHz pis- 

ton transducer with a cut-off frequency of 4.5 MHz. More will be said about real transducers 

at the end of this section. Furthermore, Z = a2/\ «6 cm for 2.25-MHz monochromatic ex- 

citation. Thus, the xy-planes at z — 3 cm and z = 9 cm can be considered in the near field 

and far field, respectively, for 2.25-MHz monochromatic excitation of a 13-mm diameter 

piston transducer. 

The results are shown in Fig. 3.3. The off-axis positions are annotated in the 

figure. The impulse responses for a given p are plotted on the same time scale, referenced 

to t = z/c, to emphasize the depth-dependent time scaling discussed in Section 3.2. In all 
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Figure 3.3:  One-way point-receiver impulse responses for the Lommel (solid) and arccos 
(dashed) diffraction formulations. 
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figures where the two diffraction formulations are compared, Lommel-derived results are 

plotted with solid lines, while arccos-derived results are plotted with dashed lines. In this 

work, the arccos diffraction formulation is the gold standard against which the Lommel 

diffraction formulation is compared. 

The plots in Figs. 3.3(a)-(b) show on-axis impulse responses. As was explained 

earlier, the on-axis impulse response for a piston transducer is a rectangular pulse of ampli- 

tude c that gets compressed in time with increasing depth z. The on-axis impulse responses 

computed with the Lommel diffraction formulation capture this behavior. As a result of 

Gibb's phenomenon, they do not capture the discontinuities at the beginning and end of 

each pulse. This was expected. 

Since we did not expect exact agreement, we claim that the on-axis impulse re- 

sponses computed using the Lommel diffraction formulation show satisfactory agreement 

with the arccos-based results. Figs. 3.3(c)-(d) show impulse responses for p = 3 mm. With 

the exception of discontinuities, the Lommel-based results are consistent with the results 

computed using the arccos diffraction formulation. 

The plots in Figs 3.3(e)-(f) show impulse responses for p = 13.6 mm. Since 

p > a, each impulse response will have a maximum amplitude less than c and will start 

at some time later than t = z/c. This behavior is confirmed in the plots. Note that the 

Lommel diffraction formulation underestimates the time duration of the impulse response 

for z = 3 cm and overestimates it for z = 9 cm. This is not surprising because the Lommel 

diffraction formulation is based on the Fresnel approximation which becomes less accurate 

with increasing off-axis distance p and decreasing depth z. 

Overall, the results show satisfactory agreement and confirm the validity of the 

Fourier equivalence of the arccos and Lommel diffraction formulations as an approximate 

Fourier transform pair. Clearly, the magnitude and phase responses (not shown) computed 

using the Lommel diffraction formulation capture the salient features of the arccos diffrac- 

tion formulation. Thus, no discussion of frequency-domain results is included at this point. 

Frequency-domain results will be discussed in great detail in the chapters that follow. 
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3.6    Computational Considerations 

Three computational issues have been discussed, and five new ones have yet to be considered. 

Because they will resurface, these considerations will be referred to as the five general 

computational considerations. 

The Fourier transform of a real signal exhibits Hermitian symmetry. Thus, Fourier 

coefficients need be calculated for positive frequencies only; negative-frequency coefficients 

are computed by simply conjugating the positive ones. This computational benefit is 

negated by the second computation consideration, namely the fact that the Lommel diffrac- 

tion formulation is ill-defined at u> = 0. Because of this, a DC frequency coefficient cannot 

be calculated directly. This consideration is moot if the DC value is not required. If the 

DC value is required, it can be indirectly obtained by exploiting the fact that the arccos 

diffraction formulation is positive semi-definite. 

Mathematically, hi(p, z, t) > 0 for all p, z, and t of practical interest. In this work, 

discrete Fourier coefficients were calculated via Eq. 3.6 and inverse Fourier transformed 

with an FFT algorithm. The resulting samples were forced to be greater than or equal to 

zero. In short, hi(p, z, t) was forced to be positive semi-definite. These two issues represent 

a trade-off inherent in any Lommel-based solution. 

The third issue is the dimensionality of k = 2irf/c in the denominator of Eq. 3.6. 

Since the coefficients calculated from the Lommel formulation are ultimately sent to an 

FFT algorithm, continuous or discrete frequencies may be used in the computation of k. 

Discrete frequencies, which are in a sense dimensionless, were used in our implementation. 

If the estimated impulse response is to be scaled to a maximum value of unity, the choice 

is immaterial. 

Fourth, as explained earlier, estimated impulse responses will suffer from ringing 

due to Gibb's phenomenon. If desired, this artifact can be reduced with frequency-domain 

windowing; a window w(f) = smc(0.25irf/fs) was used to produce the results shown in 

Fig. 3.3. The window is admittedly ad hoc, but it produced satisfactory results. 
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Finally, Eq. 3.6 gives no indication of how many frequency samples are required to 

estimate the arccos impulse response. For a given off-axis position p and sampling frequency 

fs = 0.5/Ai, the minimum number of samples required can be computed via (R - z)/(cAt) 

or (R-R')/(cAt), whichever is appropriate. Note R and R' are defined in Eqs. 3.11 - 3.12. 

A note of caution concludes this section. In comparing the two formulations numer- 

ically, accurate bookkeeping of sampling frequency, zero-padding, phase, and dimensional 

scaling is essential because results are being computed in conjugate domains. 

3.7    The Focused Case 

The results developed in the previous sections apply to unfocused piston transducers only. 

They can be extended to focused piston transducers by assuming that focusing introduces 

a time delay in Eq. 3.6. With this assumption, the Lommel diffraction formulation for a 

focused piston transducer of radius a is 

-,2,        li/irtX f   l^n* ~, .        e     _,-a.z+ kpl+kal)   \TT  (ka2   kap\ (ka2   kap\ 
(3.18) 

where 1/e = 1/z - 1/R, and R is the focal distance of the focused transducer [48]. In 

the limit as R approaches infinity, the focal length becomes infinite, and the transducer is 

considered unfocused. Thus, limß^ooe = z, and Eq. 3.18 becomes Eq. 3.6 which is the 

Lommel diffraction formulation for unfocused piston transducers. 

Eq. 3.18 was to estimate the velocity-potential impulse response for a focused 

piston transducer described by Penttinen and Luukkala [49]. The results are shown in 

Fig. 3.4, and they show good qualitative agreement with Fig. 3 in [49]. All computational 

issues discussed before apply to Eq. 3.18. 

3.8    Chapter Summary 

This chapter outlined the derivations of the arccos and Lommel diffraction formulations, 

two seminal descriptions of diffraction from a circular aperture.   The two formulations 

45 



Focused Lommel 

4 i 1             i             i             ■             l             >             ■             ■             i             ■             ■ 

E 

3   3 
H 
< 
> 

j- 
p = 0 

z = 0.999R 

1 
-i 

1  2 
0 
N 

r P = 0.05R/ 1 

a   1 ~ - 
1 p = 0.1R/   / E 

I o : Z 

- 
-1 «... , ~ 

0.6 0.8 1.0 1.2 1.4 
ct/R 

§ 2.5E 

> 2.0F 

g 1.5E 

« 
£1.0 
b 
0 
2 0.5E 

; z = 0.8R            = 

\                                      1 r\ N 
p = 0                                                                  : 

s.    p = 0.1R                                                              -. 
p<___^          f = 0.3R                                                             ; 

1.0 1.2 1.4 
ct/R 
(c) 

1.6 

Figure 3.4: Focused impulse responses after Penttinen and Luukkala [49]. 

46 



were compared and shown to be an approximate Fourier transform pair. Their connection 

was demonstrated numerically for both focused and unfocused piston transducers. Various 

computational issues were also discussed. The validity and utility of the theory developed 

in this chapter is demonstrated in the following chapters. 
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Chapter 4 

Spatially Averaged 

One-Way Diffraction 

The previous chapter established the Fourier equivalence of the arccos and Lommel diffrac- 

tion formulations as an approximate Fourier transform pair. In this chapter, we exploit this 

Fourier equivalence in deriving a set of general closed-form frequency-domain expressions 

describing one-way diffraction for unfocused piston transmitters and receivers. The expres- 

sions are general in the sense that the area of the receiver may be less than, equal to, or 

greater than that of the transmitter. The frequency-domain expressions are derived within 

the framework of Lommel's treatment of Fresnel diffraction. Additionally, we present a 

new derivation of a closed-form time-domain description of one-way diffraction for a finite 

receiver [10]. Results obtained from the time-domain expressions will be compared with 

those obtained from the frequency-domain expressions. The time-domain expressions are 

derived first. 

4.1    Spatially Averaged Arccos Diffraction Formulation 

With c and Jn(x) denoting the speed of sound and an nth-order Bessel function of the first 

kind, respectively, the velocity-potential impulse response for a unfocused piston transducer 
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and point receiver in integral form is 

acf™ Jo(rp) Ji(ra) Jo (r^J{ct)2 - z2) dr,    ct > z 
hi(p,z,t) = < (4.1) 

0, ct < z 

and in closed-form is given by Eqs. 3.11 and 3.12 which involve eponymous arccos terms. 

Eq. 4.1 assumes an unfocused piston transmitter of radius a and a point receiver as shown 

in Fig. 3.1. 

As explained in the previous chapter, the integral form and closed form of the 

arccos diffraction formulation were derived analytically by Oberhettinger [44] in 1961. A 

decade later, Stepanishen derived the closed-form solution geometrically and interpreted it 

as an impulse response [59]; thus, the arccos diffraction formulation represents the velocity- 

potential impulse response for a the special case of a piston transducer and point receiver. 

The spatially averaged impulse response in the case of a finite piston receiver of 

radius b < a coaxially located some distance z in front of the piston transmitter is 

rb 1 f 
{hi(z,t))b = —2   27T/   hi(p,z,t)pdp, 

no1 L   Jo 
(4.2) 

where ( )& denotes spatial integration and averaging over a disk of radius b. The situation 

is depicted in Fig. 4.1 Note the angular integration over 27r has already been completed in 

Eq. 4.2. 

Recall the distinction between spatial averaging and spatial integration. The dis- 

tinction is important because, as explained in Section 1.5, there is disagreement in the 

literature on the effects of integration and averaging. Williams states that the transducer 

output voltage is proportional to the spatially averaged pressure impinging on the trans- 

ducer face [67], while Harris states that the output voltage is proportional to the spatially 

averaged pressure [27]. The factor of nb2 is a small but important difference that becomes 

moot if results are normalized to a maximum value of unity. 

Cassereau, et al. derived a remarkably simple expression for (hi(z, t))t, valid for any 

b by integrating the closed-form arccos diffraction formulation directly [10]. Their expression 
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Figure 4.1: Piston transmitter and finite receiver. 

can be obtained with an alternative derivation that provides new insight into diffraction 

from a circular aperture. The derivation consists of spatially averaging the integral form of 

the arccos diffraction formulation in Eq. 4.1 and interpreting the result as a Fourier-Bessel 

or Hankel transform, 

{hl(z,t))b = ^ 

1 

2nac /     Jo(rp) Ji(ra) Jo (r\/(ci)2 - z2) pdpd 
Jp=0 Jr=o ^ ' 

2Tvabc f     T-% (T&) JI {TO) J0 (r\/(ci)2 - zA dr 
JT=0 V ' 

i r      f°° = —-=• \2irabc /     T~
2
JI(T&) Ji(ra) JO(JT) Tdr  , 

nbz I JT=0 

= -4^K\2nT-1bJ1{Tb) T^aJxira) }, 
7r£r      L > 

(4.3) 

where 7 = y/(ct)2 — z2, and !K denotes the Hankel transform with conjugate variables 7 

and r. The convolution theorem for Hankel transforms allows Eq. 4.3 to be written 

<M,.«)>.=3» <tf(s) ;"*(£)• <") 

where cyl(r) is defined in [22]. Gaskill derived a closed-form solution to Eq. 4.4 via graphical 
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convolution. With a = (j2 + a2 - b2)/(2-ya) and ß = (72 + b2 - a2)/(2yb), the solution is 

7 < a - b; 

(h1{z,t))b = < 
7T&2 

COS 
_1(a) — ay/1 — a2 + 

cos-1^)-/?^!^ 
(4.5) 

a — 6<7<a + 6; 

0, 7>a + 6. 

With the exception of a multiplicative constant, Eq. 4.5 is similar to a result derived by 

Cassereau, et al. [10]. The time scaling inherent in the limits of Eq. 3.11 and Eq. 3.12 is also 

inherent in the limits of Eq. 4.5. That is, (hi(z, t))b is compressed in time as z increases. 

Though derived under the assumption b < a, Eq. 4.4 is in fact completely general. 

If b > a, the two variables can simply be interchanged in Eq. 4.5. When a = b, Eq. 4.5 can 

be easily manipulated into the closed-form solution derived by Rhyne [52]. 

Additional insight can be gained by considering Eqs. 4.4-4.5. First, the generality 

of Eq. 4.5 is due to the commutativity of convolution in Eq. 4.4 which, in this context, 

may be interpreted as a mathematical manifestation of Helmholtz's reciprocity theorem 

[34]. Second, Eq. 4.5 is well known in optics. Gaskill calls it the cylinder-function cross 

correlation [22, pp. 302-304], while Bracewell gives the name chat function [8, pp. 187-192] 

to the special case that results when b = a. Bracewell coined this term because the shape 

of the graph of Eq. 4.5 as a function of 7 for a = b resembles a Chinese farmer's hat. Thus, 

insights and results developed in optics for Eq. 4.5 may benefit researchers in ultrasound. 

Finally, the graph that results from plotting Eq. 4.5 as a function of time t for 

b = a is strikingly similar to the celebrated brachistochrone [14,23]; compare Fig. 4.2 and 

Figs. 4.5(a)-(b). Indeed, the form of Eq. 4.5 for the case b = a is similar to the equation 

for the brachistochrone; Eq. 4.5 for the case b = a is 

2c 
(hi(z,t))a = 

7T 
arccos [ — ] — —yl — 

\2aJ     2aV 
V 

Aa2 (4.6) 
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A Brachistochrone 

>> 1.0 - 

Figure 4.2: A brachistochrone. 

and, with the parameterization 

x = r(0 — sinö)    and 

y = r(l + cos0), 

the equation for the brachistochrone is 

x — r arccos r\  1 
— r 

(4.7a) 

(4.7b) 

(4.8) 

Note the similarity between Eq. 4.6 and Eq. 4.8. The graphical and functional similarities 

just noted are not surprising when one considers the physical origin of and mathematical 

solution to the brachistochrone problem and diffraction problem. Specifically, both problems 

can be formulated in terms of Hamilton's physical principle of least action [23]. Thus, both 

are mathematically amenable to solution via the calculus of variations. More rigorous 

comparison of these two problems may lead to deeper understanding of diffraction from 

piston transducers and transducers involving other geometries. 
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4.2    Spatially Averaged Lommel Diffraction Formulation 

A set of closed-form frequency-domain expressions describing the spatially averaged one-way 

diffraction effects for the case of a finite receiver can be obtained by spatially integrating 

the Lommel diffraction formulation in Eq. 3.6. A spatially averaged closed-form expression 

will be derived for each of three cases of the radius of the piston receiver: a piston receiver 

with radius (i) b < a, (ii) b = a, and (iii) b > a. In each case, the transmitter, a piston 

transducer with radius a, and the receiver are coaxial and separated by a distance z. 

Spatial integration of the Lommel diffraction formulation for each case is facilitated 

by functions defined in Eqs. 1.2-1.10. and mathematical lemmas in [68] and in Appendix A 

of this document. Spatially integrating and averaging Eq. 3.6 yields 

1    r        rb 
(Hl(z,u))b = :^ 1%  \   Hi(p,z,u>)pdp 

Jo 
(4.9) 

Note the angular integration from 0 to 2TC has been completed. 

The integral in Eq. 4.9 can be solved for b < a with the help of results derived 

by Wolf [68]. Specifically, the Un(u,v) functions in the integrand are expanded in terms 

of Vn(u,v) via Eq. 1.4 and integrated using Lemma 9 in [68, p. 548]. The intermediate 

result is simplified by noting W\(u, v) — Wz{u, v) — Yi(u, v) and 2W2(u, v) = Y2(u, v). With 

vb = kab/z and u = ka2/z, the first spatially averaged expression is 

<£i(*,«;))6<a = -(^2 e_J(fcZ+f) {^eJt +e~j" [y2^) -JYi(u,vb)]y     (4.10) 

Eq. 4.10 is new in the literature on diffraction from an unfocused piston transducer. It is, 

however, a burdensome expression to compute. Nonetheless, the Yn functions are highly 

convergent, and the computational burden may be eased by recursion relations [69]. 

In the second case, b = a, vb = u, and Eq. 4.9 succumbs to a welcome simplification 

that is a special case of Eq. 4.10. Specifically, Yi(u,u) = 0.5uJo(u) andY2(u,u) =0.5uJi(u); 

thus the expression for the spatially averaged one-way diffraction effects when b = a is 

<£i(^)>6=a = -^e-^+f)    x     {^eif + e-i! [^(u) - jHjo(tl)]}.   (4.11) 
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Unlike Eq. 4.10, Eq. 4.11 is relatively easy to compute. We remark here that Eq. 4.11 is, 

with the exception of a multiplicative constant, the same as the result derived by Rogers and 

Van Buren [54]. Furthermore, Chen, et al. derived a similar result for the pressure transfer 

function of a focused transducer; recall pressure and velocity-potential transfer functions 

differ by the factor gju; for monochromatic excitation. 

The last case when b > a is particularly challenging. The result is derived by 

splitting the range of integration in Eq. 4.9 into the two intervals: 0 < p < a and a < p <b. 

The problem becomes 

+ 

\   2-ir [ Hi(p,z,u)pdp   ■    (4.12) 
*b2 L     Ja i 

With u = ko?/z, v = kap/z, and vb = kab/z, the integral in Eq. 4.12 is 

(Ht(z,u))u<v<Vb = _^e-J(**+f) J    [Ui(u, v) + jU2(u, v)} e-1% v dv. (4.13) 

Application of Lemma 2 in Appendix A and some algebra yields 

(Hi(z,u))u<v<Vb = Jj^2e~J{kz+']    x 

{ e-J'f [2Z2{u,u)-jZi{u,u) +jZ3(u,u)}    + 

e-& [jZi(u,vb)-jZ3(u,vb) - 2Z2(u,vb)}\,    (4.14) 

which may be simplified because Zi(u,v) — Zs(u,v) = Xi(u,v) and 2Z2(u,v) — X2(u,v). 

Thus, Eq. 4.14 becomes 

{Hi(z,u>))u<v<Vb = ^2e^'(fcz+f)    x 

L-^[X2(u,u)-jXi(u,u)]    + 

e->& [jXi(u,vb)-X2(u,vb)}\.    (4.15) 
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Now, Xi(u,u) = 0.buJo(u) and X2{u,u) = 0.5uJi(u), so 

{Hi(z,u))u<v<Vb — 
2z 

Jkbf 
s-i(**+#) 

e J2 2JiH-i2J°^ + 

,■ JL r . e J2« [jXi(u,vb) -X2{u ,«*)]}. (4.16) 

Substitution of Eq. 4.16 into Eq. 4.12 and a little algebra produces the third closed-form 

frequency-domain expression: 

(Hi{z,w))b>a = 
2z 

Jkbf 
-j(kz+ 2' < i— eJ2 1/2 

— iJ>- + e->£ [X2{u,vb) - jX^vM .     (4.17) }• 
Like Eq. 4.10, Eq. 4.17 is new in the literature on diffraction from an unfocused piston 

transducer. It is, however, a burdensome expression to compute. Nonetheless, the Xn func- 

tions are highly convergent, and the burden of computing them may be eased by recursion 

relations [69]. Finally, we note the symmetry between Eq. 4.17 and Eq. 4.10. 

The results just derived are compiled here for convenience: 

2z 
{Hi{z,u))b = 

(kb)' 
.e-i(**+f)    x 

.vf     ,-a   ,    _-i"jL 
3^e32 +e J2u iY2{u,vb) - jYi(u,vb)] 

^•«eif+e-if [^(„J-JIJOM]), 

b < a; 

b = a;     (4.18) 

b> a. j|eJ2 +e 
J2u [X2(u,vb) - jXi(u,vb)] 

4.3    Fourier Equivalence Extended to 

Spatially Averaged One-Way Diffraction 

The Fourier equivalence of the arccos and Lommel diffraction formulations can be extended 

to spatially integrated one-way diffraction. Spatially integrating Eq. 3.8 and subsequently 

inverse Fourier transforming the result yields 

(h1(z,t))b = ?-1{(H1(z,u))b} (4.19) 
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and, since (üZi(z,w))& ~ (Hi(z,u))b, we may also write 

<M*,i))6 ~ 9r_1 {<ffi(^w)>6} , (4.20a) 

<Äi(z,t)>6 = 3'-1{(Jffi(z,a;))6},    and (4.20b) 

</iiCM)>6«<fciOM)>6- (4.20C) 

Theoretically, substituting A; = w/c in the Eq. 4.18 should allow estimation of the Fourier 

coefficients of the spatially integrated arccos impulse response for any b. These coefficients 

can then be inverse Fourier transformed to estimate the spatially averaged arccos impulse 

response. This reasoning is simply an extension of the Fourier equivalence of the Lommel 

and arccos diffraction formulations for a point receiver developed in Chapter 3. 

Some discussion is required before computing and comparing spatially averaged 

impulse responses. First, Eq. 4.5 is a closed-form time-domain expression for the spatially 

averaged arccos diffraction formulation. It will serve as the gold standard in this research. 

Second, impulse responses computed using Eq. 4.5 will have compact support in 

the time domain; consequently, their Fourier transforms have infinite bandwidth in the 

frequency domain. Like the Lommel diffraction formulation (Eq. 3.6), Eq. 4.18 must be 

sampled over some finite bandwidth. Consequently, impulse responses based on Eq. 4.18 

will suffer from Gibb's phenomenon, and the comments made about impulse responses based 

on the Lommel diffraction formulation (Sections 3.4-3.5) apply here. Nonetheless, useful 

results will be obtained. 

4.4    Verification 

The Fourier equivalence of the arccos and Lommel diffraction formulations as an approxi- 

mate Fourier transform pair predicts that Eq. 4.18 and Eq. 4.20 may be used to estimate 

the one-way spatially averaged impulse response associated with the arccos diffraction for- 

mulation. Eq. 4.18 was used in this fashion and the results obtained plotted against results 

computed using the spatially averaged arccos diffraction formulation of Eq. 4.5.  Fig. 4.3 
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through Fig. 4.7 show the plots. Five values of b noted in the figures were used. Only Fig. 4.5 

is discussed in detail. Concise comments pertaining to Figs. 4.3-4.4 and Figs. 4.6-4.7 follow 

the discussion of Fig 4.5. 

Figs. 4.5(a)-(b) show spatially integrated one-way impulse responses estimated 

via Eq. 4.11 (solid lines) and spatially integrated one-way impulse responses calculated by 

using Eq. 4.5 (dashed lines). The impulse responses were calculated for b = a at two depths: 

z = 3 cm and z = 9. The speed of sound was set at c = 1540 m/s, and the diameter of the 

piston was set at 2a = 13 mm. The transducer was assumed to have an infinitely broadband 

response, and the excitation was assumed to be an impulse. The sampling frequency was 

set at fs = 36 MHz; thus, the Nyquist frequency was 18 MHz. 

With the exception of discontinuities, the impulse responses based on Eq. 4.11 

are consistent with the results computed using Eq. 4.5 and results computed by Kuc and 

Regula [37]. The five general computational issues discussed in Section 3.6 apply here; 

the window w(f) was used in computing the Lommel-based impulse responses. Thus, 

ringing due to Gibb's phenomenon is reduced in the plots, and the impulse responses show 

satisfactory agreement. It is also important to reiterate the ease with which Eq. 4.11 can 

be computed 

Figs. 4.5(b)-(c) and Figs. 4.5(d)-(e) show the squared magnitude responses (dB) 

and the phase responses associated with the impulse responses in Fig. 4.5(a) and Fig. 4.5(b), 

respectively. Taking an optimistic point of view, we can say the magnitude responses show 

satisfactory agreement, particularly at the lower frequencies. Indeed, better agreement can 

be had at higher frequencies if the sampling frequency is increased, but the cost is more 

samples. The dotted lines shown in the magnitude plots will be discussed later. 

The phase responses do not agree as favorably. This is not surprising when one 

considers the physical origins of the results being compared. Specifically, the arccos-derived 

results are based on the Rayleigh-Sommerfeld diffraction integral, while the Lommel-derived 

results are based on the Fresnel diffraction integral. Hence, the two diffraction integrals dif- 

fer primarily in terms of their phase [22]. This in conjunction with Gibb's phenomenon helps 
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Figure 4.3: One-way spatially averaged impulse responses for the Lommel (solid) and arccos 
(dashed) diffraction formulations: b = a/1000. 
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Figure 4.4: One-way spatially averaged impulse responses for the Lommel (solid) and arccos 
(dashed) diffraction formulations: b = a/2. 
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explain the phase differences exhibited in the plots. Reasons for the spectral discontinuity 

at the Nyquist frequency are not fully understood. 

It is crucial to note, however, that Eq. 4.11 was derived under the assumption 

of an ideal piston transducer with a Dirac response. Thus, Eq. 4.11 is completely general 

in terms of frequency. Real transducers, however, are bandlimited. This observation also 

holds for Eq. 4.10 and Eq. 4.17 and bodes well for the unified theory being proposed. 

For example, let's consider a real 2.25-MHz unfocused piston transducer with 

diameter 2a = 13 mm. A typical bandwidth for such a transducer is 2 to 4 MHz centered at 

2.25 MHz. Clearly, the results shown in Fig. 4.5 apply to the real transducer just described. 

Indeed, they apply quite well, particularly in a magnitude sense, with just 2X oversampling. 

Thus, if a diffraction correction were desired for this transducer, Eq. 4.11 could be used to 

calculate an inverse filter directly in the frequency-domain. Furthermore, higher sampling 

rates could be used, and the results applied to real transducers operating at a frequencies 

higher than 2.25 MHz. 

Of course, Eq. 4.5 could be used to implement the diffraction correction as a time 

deconvolution [10]. In fact, Eq. 4.5 is more general than Eq. 4.11, but an FFT is required 

if frequency-domain results are desired. On the other hand, Eq. 4.11 can be calculated 

directly in the frequency domain across any bandwidth of interest. Clearly though, Eq. 4.5 

is superior if an impulse response is desired. Nonetheless, we have demonstrated the utility 

of the proposed unified theory for spatially averaged one-way diffraction. 

Figs. 4.3-4.4 and Figs. 4.6-4.7 show results for cases when b / a. With the excep- 

tion of discontinuities, the results show remarkable qualitative and quantitative agreement, 

and the discussion of results obtained for b = a apply. 

Indeed, the spatially averaged results for b = a/1000 shown in Figs. 4.3(a)-(b) 

are consistent with the results predicted by point-receiver theory [59]. In particular, the 

case b = a/1000 approximates the case of an on-axis (p = 0) point receiver, and Eq. 3.11 

predicts that the velocity-potential impulse response hi(p, z, t) for this case should resemble 

a rectangular pulse. Spatially averaged impulse responses (hi(z, £))& computed with Eq. 4.10 
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for b = a/1000 are consistent with the point-receiver theory. The temporal duration of the 

Lommel-based impulse responses differ from the arccos-based impulse responses for b > a 

because Eq. 4.18 is based on the Presnel approximation while Eq. 4.5 is based on the 

Rayleigh-Sommerfeld diffraction integral. 

Finally, the results shown in Fig. 4.5 place the difference between spatial averaging 

and spatial integration [27,67] in new perspective. The spatially averaged results shown in 

the figure are consistent in every respect with the theory of one-way diffraction for a point 

receiver presented in the previous chapter. See in particular Fig. 3.3 (a-b) and note the 

amplitude of the pulses. Spatially integrated results would differ by a factor of irb2. 

4.5 Computational Considerations 

The computational issues discussed in Chapter 3 apply here. Analog frequency was used to 

compute Eq. 4.18 and the results multiplied by A/ prior to inverse Fourier transforming. 

Finally, the highest-order Bessel function used in computations of X2 and Y-i was faix). 

4.6 Chapter Summary 

Closed-form time-domain and frequency-domain expressions applicable to unfocused one- 

way diffraction with a finite receiver of any radius were derived. The time-domain ex- 

pressions were derived by interpreting a spatially averaged version of the integral form of 

the arccos diffraction formulation as a Hankel transform and borrowing results derived by 

Gaskill [22]. The time-domain results turned out to be the same as results derived by 

Cassereau, et al. [10], but the derivation was different. On the other hand, the frequency- 

domain results were derived by direct spatial integration of the Lommel diffraction formu- 

lation. 

The comparison of results obtained from the time- and frequency-domain expres- 

sions verified the theoretical prediction that the Fourier equivalence of the arccos and Lom- 

mel diffraction formulations could be extended to spatially averaged one-way diffraction. 
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The results showed remarkable agreement for b « a and began to disagree with b > a. How- 

ever, this disagreement was nicely explained by the theory. Specifically, the time-domain 

expressions are more general, in terms of p and z, than the frequency-domain expressions 

because the former expressions are based on Rayleigh-Sommerfeld diffraction while the lat- 

ter are based on the Presnel approximation to Rayleigh-Sommerfeld diffraction. Overall, 

the results obtained in this chapter cause us to be optimistic that the Fourier equivalence 

of the arccos and Lommel diffraction formulations can be extended to the autoconvolution 

interpretation of two-way diffraction. Finally, the one-way results derived in this chapter 

can be applied to the mirror-image interpretation of two-way diffraction simply by doubling 

z in Eq. 4.5 and Eq. 4.18. 
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Chapter 5 

Spatially Averaged 

Two-Way Diffraction 

Chapter 3 established the Fourier equivalence of the arccos and Lommel diffraction formu- 

lations for one-way diffraction with a point receiver, and Chapter 4 extended this Fourier 

equivalence to spatially averaged one-way diffraction. This chapter explores the possibility 

of extending the theory of approximate Fourier equivalence to a spatially averaged version of 

the autoconvolution interpretation of two-way diffraction. The mirror-image interpretation 

of two-way diffraction is trivial (Section 1.4 and Section 4.6) and not discussed here. 

5.1    Spatially Averaged Arccos Diffraction Formulation 

A linear model of reflection imaging is the mathematical starting point. The model devel- 

oped by Hunt, et al. [29] will serve nicely. Adapted to our purposes, it is 

d2vT{t) 
VR(P, Z, t) = * 9T(t) * s(t) * gR(t) *hT(p,z,t)*hR(p,z,t) (5.1) 

dt2 

where the subscripts T and R denote transmit and receive, respectively, u#(£) is the voltage 

at the output of the receiver, and vx{t) is the excitation voltage. The transmit and receive 

responses of the transducer are gr{t) and <7ß(£), respectively, and are assumed to be delta 



functions (Section 1.10). The impulse response h(p,z,t) represents the propagation effects, 

and s(t) is the impulse response for a point scatterer. The convolutions are performed 

over time t. Discussion about the order and placement of time derivatives and other id- 

iosyncrasies of two-way ultrasound models is postponed until Chapter 7. See Jensen [31] or 

Cassereau, et al. [10] for more discussion on linear models of ultrasound. 

To derive a closed-form solution for spatially averaged autoconvolution diffraction, 

it will be necessary to model vx(t) and s(t) as delta functions and assume the transmit and 

receive propagation effects are due to diffraction only. In short, frequency-dependent scat- 

tering and frequency-dependent attenuation not included in the current derivation. These 

effects can be taken into account once diffraction effects in Eq. 5.1 have been filtered out. 

Attention may now be focused on the convolution outside the brackets in Eq. 5.1. 

Consider Fig. 3.1 in terms of Eq. 5.1 and assume a point scatterer at some off-axis 

distance p. Since the convolution of hr(p, z, t) and /i#(p, z, t) has been assumed to involve 

diffraction only, Helmholtz's reciprocity theorem in conjunction with Hyugen's principle [34] 

can be used to write 

h2(p,z,t) = hi{p,z,t)* hi(p,z,t) (5.2) 

where the subscripts 1 and 2 denote one-way and two-way diffraction, respectively. Thus, 

the two-way impulse response for the case of a point scatterer is an autoconvolution of the 

one-way velocity-potential impulse response for that same point scatterer. Fink interpreted 

two-way diffraction this way in Eq. 12 of [18]. Eq. 5.2 is the autoconvolution interpretation 

of two-way diffraction. 

Note Eq. 5.2 is valid for a point scatterer only. Spatial averaging is required to 

estimate the effects of two-way diffraction for reflection from a plate as shown in Fig. 5.1. 

Note that Fig. 4.1 and Fig. 5.1 differ only in interpretation- The disk is interpreted as a 

receiving disk in the former and as a reflecting disk in the latter. As explained in Sec- 

tion 1.5, spatial integration over a volume is more realistic but more difficult, and a plane 

is assumed for mathematical simplicity. The averaging is done by dividing by na2 because 
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Figure 5.1: Piston transducer and reflecting disk. 

the transducer acts as both transmitter and receiver. 

The reflecting plane can be any shape but is assumed to be a disk for mathematical 

tractability. Spatially integrating Eq. 5.2 over the surface of the reflecting disk and dividing 

by the receiver area yields 

(h2{z,t))b = 
ltd* 

2TT     hi(p,z,t)*hi(p,z,t)pdp   . 
.   Jo 

(5.3) 

Note the angular integration from 0 to 27r has been completed.  Unfortunately, Eq. 5.3 is 

simply too complicated to solve in closed form. Other tactics must be employed. 

5.2    Spatially Averaged Lommel Diffraction Formulation 

Our initial attack on a spatially averaged form of autoconvolution diffraction was turned 

back by an extraordinarily difficult time-domain integral (Eq. 5.3). A counter-attack in 

the frequency domain will lead to a limited but nonetheless satisfactory and respectable 

victory. In this section, it will be shown that magnitude-only expressions based on Wolf's 

treatment [68] of monochromatic optical diffraction can be can be adapted to ultrasonic 

piston transducers operating in pulsed mode.   The assumption of minimum phase will 



enable approximation of a phase response which, in turn, will allow easy estimation of the 

spatially averaged two-way impulse for autoconvolution diffraction. 

The Fourier transform of Eq. 5.3 is 

rb 

{H2{z,co))b 
1 f 

—   27T/   Hiip, 
™ L  Jo 

z,u) Hi(p,z,w) p dp (5.4) 

Furthermore, we invoke the Fourier equivalence of the arccos and Lommel diffraction formu- 

lations (Chapter 3) and substitute the focused Lommel diffraction formulation Hi(p,z,u>) 

(Eq. 3.18) ior Hi{p,z,uj). 

The integral that results from substituting Hi(p,z,u) for Hi(p,z,u)) in Eq. 5.4 is 

still complicated because of the implicit demand to retain the phase of the two-way transfer 

function in Eq. 5.4. Recall that phase is required to compute an impulse response via 

an inverse Fourier transform. If the demand for phase information is dropped, Eq. 5.4 in 

magnitude-squared form becomes 

(H2(z,u))b 
7ror 

1      /•»- 
2TT     Hi(p,z,u)Hi(p,z,u)p 

.   Jo 
dp (5.5) 

and the Cauchy-Schwarz inequality for integrals permits us to write 

1    [ fb -~ 
—   /   #iW> ijS) pdp < 

7TGT 
27r/    Hi(p,z, 

.   Jo 
u) pdp (5.6) 

The Cauchy-Schwarz inequality also indicates that equality in Eq. 5.6 does not hold; so 

2      /  i    [     fb   ^ 2        ]\2 

(H2(z,u)))b    < ( ^2   27!7    HiiPiZ'U)    pdp j   . (5.7) 

Taking the square root of Eq. 5.7 yields 

1 
{H2(z,u))b < 

7TGT 
2TT/     Hi(p,z, 

.   Jo 
w pdp (5.8) 

Eq. 5.8 provides an upper bound for the magnitude response associated with the spatially 

averaged autoconvolution impulse response. 

This upper bound can be interpreted mathematically by letting 

f(p,z,t) = hi(p,z,t)*hi(p,z,t), (5.9) 
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where * denotes correlation over time t, and f(p, z, t) is the autocorrelation of the one-way 

diffraction impulse response hi(p,z,t). Spatially averaging f(p,z,t) and taking its Fourier 

transform yields 

9 
[na2 [   J0 

hi(p,z,t)*hi(p,z,t) pdp }w^2    27r/ J      Tra2 L   Jo 
Hi{p,z,oj) pdp (5.10) 

where the Fourier equivalence of the arccos and Lommel diffraction formulations has been 

invoked. Note that the right-hand sides of Eq. 5.8 and Eq. 5.10 are equal. Thus, the 

magnitude of the spatially averaged autoconvolution impulse response is strictly less than 

the magnitude of the spatially averaged autocorrelation impulse response. 

With this insight in mind, we make the ad hoc assumption that the magnitude 

of the spatially averaged autoconvolution impulse response is approximately equal to the 

magnitude of the spatially averaged autocorrelation impulse response: 

{H2(z,u)))b 
7TGT 

rb ~ 
2TT       Hi{p,z,w) 

.   Jo 
pdp (5.11) 

Our results will justify the assumption. 

With u = ho? j |e|, v = kap/z, and Vb = kab/z, Eq. 5.11 becomes 

^ 1    ( 2   fVb 1 
(H2(z,u))b ~p{^/o    [U?(u,v) + Ul(u,v)]vdvj. (5.12) 

Wolf solved the braced integral in Eq. 5.12 for vb < u, vb = u, and vb > u [68]. Thus, the 

ad hoc assumption in Eq. 5.11 allows us to borrow Wolf's results for optical diffraction and 

apply them to a spatially averaged form of the autoconvolution diffraction. The results for 

the three regions are for b < a, 

{H2(z,(v))b\ *(©'['*i:££(?r<w*> \ L        s=0 J 

4 
u 

(5.13) 

for b = a, 

(H2{z,a}))b w T^(l - J0(u)cos{u) -Ji(u)sm(u)J, (5.14) 
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and for b> a, 

<&(,,«)>, »pf(l-g^ (^)2' <M*)) ■ (5-15) 

These results reduce to the case of an unfocused transducer in the limit as / -> oo since 

lim/_>00 e = z. 

5.3    Extending Fourier Equivalence with Minimum Phase 

We should be able to apply the theory of approximate Fourier equivalence to spatially 

averaged autoconvolution diffraction. However, Eqs. 5.13-5.15 contain no phase information; 

thus, the inverse Fourier transform will be insufficient when it comes to computing a spatially 

averaged autoconvolution impulse response. The concept of minimum phase [51] will help 

overcome this problem. 

In simplistic terms, a minimum-phase system is one that is causal and stable; see 

Rabiner and Schäfer [51] for details and definitions. A general property of a minimum- 

phase system is that its phase response can be calculated from its magnitude response and 

vice versa. Since the autoconvolution of hi(p, z, t) is both causal and stable, the minimum- 

phase solution is assumed. The minimum-phase assumption is not without precedent in 

ultrasound. See, for example, Kuc's paper on modeling acoustic attenuation [36]. Thus, 

(h2(z,t))b = J-1 [\{H2(z,u>))b\ e^H} (5.16) 

where the minimum phase <f>(uj) is the Hubert transform ofln(\(H2(z,u))b\)- The choice of 

sign in Eq. 5.16 depends on the depth z and accounts for the time reversal of the focused 

arccos diffraction formulation when z > R [2]; recall R is the focal length (Section 3.7). No 

such time reversal occurs in the unfocused case, and the sign of the phase is chosen based 

on the sign convention of the FFT being used. Recall Eq. 5.16 is based on Eq. 3.18 which, 

as explained in Section 3.7, holds for focused and unfocused transducers; thus Eq. 5.16 

theoretically holds for both focused and unfocused piston transducers. 
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5.4    Verification 

Results obtained from Eq. 5.16 were plotted against results computed via numerical integra- 

tion of the arccos diffraction formulation. Figs. 5.2-5.5 illustrate the results. All results were 

normalized to a maximum value of unity for reasons which will be discussed in Section 5.5. 

Before discussing the results, we should note well that Eq. 5.16 is an assumption in 

an approximation wrapped in estimation. Specifically, we have made the ad hoc assumption 

that the magnitude of (#2(2, w))b1S approximately equal to its upper bound as calculated by 

the Cauchy-Schwarz inequality (Eq. 5.11). Additionally, (H2{z,u))b is based on the Fresnel 

approximation. Finally, the phase response of {h,2{z,u>))b is estimated using the minimum- 

phase assumption, and the DC value of (ti2(z,t))b is estimated by the method described in 

Section 3.6. Thus, if the normalized results shown in the figures are in reasonable agreement, 

we should declare victory and not necessarily quibble about how the battle was fought. 

The data plotted in the figures were computed for an unfocused piston transmitter 

with diameter 2a = 13 mm and a reflecting disk with radius b. Four different values of b 

were used, and these are noted in the figures. As in the one-way case, the impulse responses 

were calculated for two depths: z = 3 cm. and z — 9 cm. The speed of sound was set at 

c = 1540 m/s, and the transducer was assumed to have an infinitely broadband response. 

The excitation was assumed to be an impulse. The sampling frequency was set at fs = 36 

MHz; thus, the Nyquist frequency was 18 MHz. Only Fig. 5.4 is discussed in detail. Concise 

comments pertaining to the Figs. 5.2-5.3 and Fig. 5.5 follow the discussion of Fig 5.4. 

Figs. 5.4(a)-(b) show two-way spatially averaged impulse responses estimated via 

Eq. 5.16 (solid lines) and spatially averaged two-way impulse responses calculated by nu- 

merical integration of Eq. 5.3 (dashed lines). The results computed using Eq. 5.16 differ 

only slightly from the results computed by numerically integrating the autoconvolution of 

the arccos formulation, but otherwise the Lommel-based results capture the salient features 

computed by numerical integration, particularly time-compression with increasing depth. 

These results justify the assumptions discussed at the beginning of this section. 
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Figs. 5.4(c)-(d) show the squared magnitude responses (dB) associated with the 

impulse responses in Fig. 5.4(a) and Fig. 5.4(b), respectively. The magnitude responses 

show excellent agreement over a wide range of frequencies. As in the one-way case, better 

agreement can be had at higher frequencies if the sampling frequency is increased, but again 

the cost is more samples. The ease of computing the magnitude response with Eq. 5.14 

must be emphasized; numerical integration and do-loops are not required. Furthermore, 

computation can be done directly in the frequency domain. The dotted lines in the plots 

will be discussed in Section 7.2. 

Figs. 5.4(e)-(f) show the phase responses associated with the impulse responses 

in Fig. 5.4(a) and Fig. 5.4(b), respectively. The results show satisfactory agreement, but 

the computation of each phase response required a Hilbert transform. However, the Hubert 

transform is a is a routine computation in signal processing which can be implemented 

fairly easily [70]. Finally, as in the one-way case, it is crucial to note Eqs. 5.13-5.15 were 

derived under the assumption of an ideal piston transducer with a Dirac response. As a 

result, Eqs. 5.13-5.16 are completely general in terms of frequency. But real transducers are 

bandlimited. 

As in the one-way case, let's consider a real 2.25-MHz unfocused piston transducer 

with diameter 2a = 13 mm. A typical bandwidth for such a transducer is 2 to 4 MHz 

centered at 2.25 MHz. Clearly, the results shown Fig. 5.4 apply to this real transducer. 

Indeed, they apply quite well, particularly in a magnitude sense, with only 2X oversampling. 

Thus, if a spatially averaged autoconvolution diffraction correction were desired for this 

transducer, Eq. 5.14 could be used to calculate an inverse filter directly in the frequency 

domain. Furthermore, higher sampling rates could be used, and the results applied to 

real transducers operating at higher frequencies than 2.25 MHz. Thus, we have again 

demonstrated the utility of the proposed unified theory for spatially averaged diffraction 

correction. 

Figs. 5.2-5.3 and Fig. 5.5 show results for b ^ a. Overall, the normalized re- 

sults show quite satisfactory results given the stated approximations. Indeed, the spatially 
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averaged results for b = a/1000 in Fig. 5.2 are consistent with the results predicted by 

point-receiver theory [60]. In particular, the case b = a/1000 approximates the case of an 

on-axis (p = 0) point scatterer, and Eq. 5.2 predicts that h,2(p,z,t) for this case should 

be triangular in shape as a result of convolving two rectangular pulses. Spatially averaged 

impulse responses {hz(z,t))b computed with Eq. 5.13 for b = a/1000 are consistent with the 

point-receiver theory. 

Agreement between the two sets of results begins to break down with b > a 

(Fig. 5.5). The behavior of Lommel-based results for b > a has been noted in Section 3.5 

and Section 4.4 and is not surprising since the Lommel diffraction formulation is based on 

the Fresnel approximation. Furthermore, the minimum-phase assumption may break down 

for b> a. Thus, we did not bother computing results for any b > la. 

5.5    Computational Considerations 

The five general computational issues discussed in Chapter 3 apply here; however, two 

caveats are needed. First, the time duration of the two-way impulse response must be 

increased to account for the temporal effects of autoconvolution; this can be handled by 

sufficient zero-padding. Second frequency-domain windowing was not used with Eq. 5.16 to 

produce the plots in Figs. 5.2-5.5 because there are no dramatic discontinuities evident in 

the impulse responses. Thus, Gibb's phenomenon was not as pronounced as in the one-way 

case, and windowing was not required. This is not surprising because autoconvolution, in 

general, removes discontinuities [48, pp. 78-81]. 

Three new computational issues applicable only to spatially averaged autoconvo- 

lution diffraction require discussion. First, the arccos-based and Lommel-based impulse 

responses were normalized to unit amplitude because the scaling of (/i2(^M))fc remains an 

open question. The second computational consideration involves the assumption of mini- 

mum phase and demands more lengthy discussion. As noted earlier, the choice of sign in 

the minimum phase of Eq. 5.16 depends on the depth z and accounts for the time reversal 
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Figure 5.2: Two-way spatially averaged impulse responses for the Lommel (solid) and arccos 
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of the focused arccos diffraction formulation when z > R. No such time reversal occurs in 

the unfocused case phase, and the sign is chosen based on the sign convention of the FFT. 

Incorrect choice of sign results in a time-reversed impulse response. 

The minimum phase assumption also produced some unexpected results. Specif- 

ically, the spatially averaged autoconvolution impulse response is expected to be positive 

semi-definite because hi(p,z,t) is positive semi-definite. However, the phase response cal- 

culated via the minimum-phase assumption sometimes caused the impulse response to be 

180 degrees out of phase with the theoretically predicted value. This condition can be 

easily tested for and corrected algorithmically. Finally, considerable over-sampling in the 

frequency domain, particularly for b <C a, may be required to obtain meaningful autocon- 

volution impulse responses from Eq. 5.16. 

5.6    Chapter Summary 

This chapter has shown that a set of equations derived by Wolf in 1951 for optical diffrac- 

tion can be applied to spatially averaged autoconvolution diffraction for both focused and 

unfocused piston transducers operating in pulsed mode. Wolf's expressions are based on 

Lommel's treatment of Fresnel diffraction and are magnitude-only expressions; minimum 

phase was assumed in order to estimate the phase response. Results computed with the 

Lommel-based expressions were compared to results obtained from numerical integration of 

the arccos diffraction formulation. Given the number of approximations and assumptions 

involved, the normalized results showed excellent agreement. Autoconvolution diffraction 

was validated, in terms of magnitude and phase, for the unfocused case only, but it should 

hold for focused transducers. This claim is verified in a magnitude-only sense in Chapter 7. 

79 



Chapter 6 

Experimental Investigation 

The discussion up to this point has focused on developing and verifying a unified theory of 

spatially averaged diffraction corrections. In this chapter, an aspect of the unified diffraction 

theory is investigated experimentally. Specifically, autoconvolution diffraction corrections 

will be implemented with time-varying filters, and diffraction-corrected B-mode images will 

be reconstructed using a short-time Fourier technique. The raw and diffraction-corrected 

images will be compared in a qualitative sense. Differences between raw and corrected RF 

data will be quantitatively analyzed via spectral centroids (Section 1.6). 

At this point it is necessary to reiterate the three points discussed in Section 1.7. 

First, the experiments were not designed to verify the theory in any authoritative fashion. 

Rather, they were designed to gauge the feasibility of the proposed autoconvolution diffrac- 

tion correction. Second, the diffraction-corrected images are an important contribution 

of this work. Although the differences between the raw and diffraction-corrected images 

are subtle, they reveal that diffraction correction appears to affect RF data more than it 

does envelope-detected data. Finally, and most importantly, the experiments are 

not to be considered, in any way, clinical validation of the proposed diffraction 

corrections. 

It is also important to note that the autoconvolution diffraction corrections are 

based on Eq. 5.16 which was verified in terms of magnitude and phase for unfocused piston 
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Figure 6.1: Reflecting disk in main beam. 

transducers only. Hence, both magnitude and phase responses were computed and applied 

for unfocused corrections while only magnitude responses were computed and applied for 

focused corrections. 

6.1    A Computational Consideration 

Chapter 5 showed that effects due to autoconvolution diffraction depend on b, the radius 

of the reflecting disk. This, coupled with the fact that b is theoretically unrestricted, raises 

a new computational issue. Specifically, to the extent that Eqs. 5.13-5.15 and 5.16 model 

reality accurately, what b should be used in practice? An imprecise but intuitively appealing 

answer can be had if we consider Fig. 6.1 in terms of conservation of energy. The figure 

shows a reflecting disk located in the beam of a focused transducer. 

Since no attenuation mechanism has been included in the theory, the total acoustic 

energy is constant for all z, but the energy density is not. Loosely speaking, the energy gets 

more concentrated at the focus.  Since the energy density is not constant, the radius b of 
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the reflecting disk determines the amount of energy that is reflected back to the transducer. 

The extremes are 6 = 0 and b -¥ oo; the former implies the transducer receives no reflected 

energy, while the latter implies the transducer receives all the reflected energy. For some 

finite b (say 0 < b < a as shown in the figure), the reflected energy varies as a function of z 

with maximum energy being reflected when the disk is located at the focus. The reflected 

energy decreases as the disk is moved away from the focus. 

In practice, b will probably have to be varied as a function of depth z. For the 

purposes of this work, we simply fixed b at 0.516a for unfocused transducers and at Kfa for 

focused transducers where Kf is the focusing factor; the focusing factor is approximately 

0.2, 0.5, and 0.8 for short-, medium-, and long-focus transducers, respectively [35,46]. This 

discussion will be continued in Section 7.2.2. 

6.2    Equipment, Parameters, and Processing 

Unfocused diffraction corrections based on Eq. 5.16 and focused diffraction corrections based 

on the magnitude of Eq. 5.16 were applied to RF echo data obtained from a variety of piston 

transducers operating in pulsed mode. The RF data were obtained using the equipment 

shown in Fig. 6.2. A Panametrics model 5052PR pulser/receiver provided transducer ex- 

citation and initial amplification of the RF echo data. Data of interest were segmented 

with a Panametrics model 5052G gate. Additional amplification was provided by a RITEC 

model BR-640 broadband receiver, and the RF data was digitized to 8-bit resolution by a 

Data Precision 6100B universal waveform analyzer. The RF data were subsequently down- 

loaded to a personal computer (PC). A stepper motor (not shown) was used to move the 

transducer. 

All subsequent signal processing was done on the PC. Specifically, a diffraction 

filter was calculated using Eq. 5.16 for the bandwidth of interest. Next, the filter was 

normalized by its maximum value, and the corresponding inverse filter was calculated. The 

resulting diffraction correction was implemented as a time-varying filter via a short-time 
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Figure 6.2: Experimental set-up. 
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Fourier technique known as the weighted overlap-add (WOLA) method [15]. Fig. 6.3 depicts 

the WOLA processing used in this work. 

The following short-time Fourier parameters (see [51] for parameter definitions) 

were used: hop length of 4 samples, 256 filter coefficients from DC to the Nyquist frequency, 

and a window length of 31 samples zero-padded to 256 samples. A Hamming window was 

used in analysis, while the synthesis window was rectangular. The bandwidth of interest 

was defined as fc ± fc/2, where fc is the center frequency of the transducer. The RF 

sampling rate of the Data Precision 6100B was set at 40 nanoseconds and 20 nanoseconds 

for fc < 2.25 MHz and fc > 2.25 MHz, respectively. The sampling rate was later reduced 

by a factor of two in software. In each experiment, the transducer was perpendicular to the 

target, the distance between scans or lateral sampling rate was 0.3 mm, and no averaging 

was done in either the axial or lateral direction. 

6.3    Experiments and Results 

Results obtained from ten imaging experiments along with relevant imaging parameters 

are shown in Figs. 6.5-6.29 which are grouped at the end of the chapter for convenience. 

Figures containing gray-scale images obtained with unfocused transducers are followed by 

two figures which indicate the magnitude and phase filtering done to obtain the diffraction- 

corrected data. Figures containing gray-scale images obtained with focused transducers are 

followed by one figure which indicates the magnitude filtering done to obtain the diffraction- 

corrected data. 

The format of the figures containing gray-scale images is as follows. The gray- 

scale images labeled (a) in the figures show B-mode images constructed from raw RF data. 

The images in Fig. 6.5(a) and Fig. 6.8(a) show a specimen of unfixed cancerous human 

breast tissue in water on a sponge (100 A-lines). The images in Fig. 6.11(a), Fig. 6.14(a), 

Fig. 6.16(a), and Fig. 6.19(a) show a specimen of unfixed pig liver in water on a sponge 

(50 A-lines). The images in Fig. 6.21(a), Fig. 6.23(a), and Fig. 6.25(a) show disks in an ATS 
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Figure 6.3: Short-time Fourier processing of A-lines. 
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Laboratories Model 539 attenuating phantom (60 A-lines). The wire-target data shown in 

Fig. 6.27(a) was taken from a standard AIUM wire phantom (24 A-lines with a 0.8 mm 

lateral sampling rate). The gray-scale images labeled (b) show B-mode images constructed 

from diffraction-corrected RF data. No clinical data on the tissue or liver samples is 

provided because the experiments were not designed to demonstrate or validate 

the clinical efficacy of the proposed diffraction corrections. 

The plots labeled (c) and (d) in the figures containing gray-scale images are the 

FFT's of the middle A-line from the raw and corrected RF data, respectively. The FFT data 

were smoothed after log scaling to dB; hence, the maximum value is not 0 dB. The centroid 

plots labeled (e) and (f) in the figures with gray-scale images were made by calculating, via 

short-time Fourier transform, the spectral centroid of the middle A-line from the raw and 

corrected RF data, respectively. The centroid plots are annotated with the mean pi and 

variance a computed from the respective centroid record. Recall that the spectral centroid 

measures the mean frequency of a signal (Section 1.6). 

The figures immediately following the figures containing gray-scale images show 

the magnitude response and, for unfocused transducers, the phase response of the diffraction 

correction. The responses are plotted as a function of frequency in the column on the left, 

while they are plotted as a function of depth in the column on the right. 

6.4    Discussion of Results 

Diffraction correction affected the data in three ways. First, it performed a kind of depth- 

dependent time-gain correction which can be seen by comparing the raw and filtered gray- 

scale images. This claim is more forcefully illustrated in Fig. 6.4 which compares raw (solid) 

and diffraction-corrected (dotted) envelope data for two of the ten imaging experiments. 

The first two plots labeled (a) and (b) in Fig. 6.4 show single envelope-detected A-lines from 

the breast-tissue data (Fig. 6.8) and from the disk data (Fig. 6.21). The bottom two plots 

labeled (c) and (d) in Fig. 6.4 show the sum of all the envelope-detected A-lines for the two 
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sets of data; they are, in a sense, projections. The depth-dependent time-gain correction in 

the disk data is more pronounced when compared to the breast-tissue data because the disk 

data were taken with a lower-frequency transducer which exhibited more high-frequency 

attenuation due to diffraction. 

Breast: A-line Phantom: A-line 

6 7 
z (cm) 

(a) 
Breast: Sum 

4        5        6        7 
z (cm) 

(c) 
Phantom: Sum 

Figure 6.4: Raw (solid) and diffraction-corrected (dotted) envelope data. 

Second, the diffraction correction is, in a spectral sense, a depth-dependent high- 

frequency amplifier. Compare the raw and diffraction-corrected gray-scale images. Qual- 

itatively speaking, the diffraction-corrected images look crisper or sharper than the raw 

images. Additionally, compare the raw and filtered FFT's shown in the figures contain- 

ing gray-scale images. Clearly, the high-frequency information contained in the useable 

bandwidth the diffraction-corrected data has a larger magnitude than the high-frequency 

information contained in the useable bandwidth of the raw data.   Third, the diffraction 

87 



correction appears to reduce the variance of the spectral centroid. The variance reduction 

is more noticeable for focused transducers than for unfocused, but a quantifiable reduction 

has been achieved for all cases except one (Fig. 6.11). 

6.5    Chapter Summary 

This chapter experimentally investigated an aspect of the unified diffraction theory de- 

veloped in previous chapters. Specifically, autoconvolution diffraction corrections were 

implemented with time-varying filters, and diffraction-corrected B-mode images were re- 

constructed using a short-time Fourier analysis/synthesis algorithm known as the weighted 

overlap-add (WOLA) method. The raw and diffraction-corrected images were compared 

only qualitatively. Differences between raw and corrected RF data were quantitatively ana- 

lyzed via spectral centroids, a measure of average frequency. The experimental results prove 

that, at worst, the proposed diffraction correction does no harm and, at best, it removes 

spectral bias and appears to improve image quality. 
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Figure 6.17: Magnitude response — 5.0 MHz unfocused (2a = 9.53 mm). 
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Figure 6.19: Pig liver on sponge — 5.0 MHz long focus (2a = 13 mm). 
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Figure 6.21: Disk phantom — 2.25 MHz medium focus (2a = 13 mm). 
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Figure 6.22: Magnitude response — 2.25 MHz medium focus (2a = 13 mm) 
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Figure 6.23: Disk phantom — 3.5 MHz medium focus (2a = 13 mm). 
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Figure 6.25: Disk phantom — 5.0 MHz medium focus (2a = 13 mm). 
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Figure 6.26: Magnitude response — 5.0 MHz medium focus (2a = 13 mm). 
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Figure 6.27: Wire targets — 2.25 MHz unfocused (2a = 13 mm). 
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Figure 6.28: Magnitude response — 2.25 MHz unfocused (2a = 13 mm). 
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Chapter 7 

Analytical Investigation 

Chapter 3 unified the arccos and Lommel diffraction formulations as an approximate Fourier 

transform pair. Chapters 4-5 used Lommel's treatment of Fresnel diffraction to derive 

closed-form spatially averaged diffraction corrections for one-way and two-way diffraction. 

The last chapter investigated experimental application of autoconvolution diffraction correc- 

tion. The analytical investigation in the current chapter demonstrates the predictive power 

of the proposed unified theory developed and simultaneously ties up some loose ends. The 

predictive power of the theory is demonstrated in an examination of more subtle aspects 

of ultrasonic diffraction including mirror-image diffraction, autoconvolution diffraction, and 

the number of time derivatives necessary in a linear model of ultrasonic reflection imaging. 

The unified theory developed so far places these aspects of ultrasonic diffraction in new 

perspective. Taken in its entirety, this chapter presents a new quantitative comparison of 

the mirror-image and autoconvolution interpretations of two-way diffraction. 

Recall the mirror-image interpretation of diffraction claims that results derived for 

one-way diffraction can be applied to two-way diffraction by simply doubling the distance 

in the one-way equations. Before this claim can be investigated more fully, it would be 

wise to re-examine and, where possible, re-validate the closed-form one-way and two-way 

expressions derived in Chapters 4-5. 
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Figure 7.1: Attenuation caused by diffraction as a function of S in the near-field. 

7.1    One-way Diffraction 

In this section, we re-examine the closed-form frequency-domain expressions in Eq. 4.18, and 

we are particularly interested in their behavior as a function of the radius of the receiving 

aperture b. The validity of Eq. 4.18 for b < a has already been demonstrated. Specifically, 

Section 4.4 showed that Eq. 4.18 approximated the behavior of an on-axis point receiver for 

the choice of parameter b = a/1000. It must be emphasized that the closed-form spatially 

averaged expression captured the salient features of the impulse response predicted by the 

well-established theory for an on-axis point receiver. 

The validity of Eq. 4.18 for b = a has already been checked against Eq. 4.5, but it 

can be double checked against the work done by Bass [5] and Williams [67]. Figs. 7.1-7.2 

show spatially averaged one-way diffraction effects for monochromatic excitation plotted 

as a function of S = z\/a2. The parameters used to compute the data shown in the 

plots are the same as in Bass's 1958 article: c = 1200 m/s, a = 1 cm, and / = 0.956 

MHz.  The data were obtained from (i) Bass's 1958 equation [5, Eq. (14)], (ii) Williams' 
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Figure 7.2: Attenuation caused by diffraction as a function of S in both the near-field and 
far-field. 

1970 equation [67, Eq. (6)], and (iii) Eq. 4.11. Note that Williams [67, p. 286] corrected 

two typos in Bass's 1958 equation. The oscillatory behavior of Bass's result at low S is 

due to the small number of terms used in his equation. The overall results, however, show 

excellent agreement, and the plots confirm the well-established fact that attenuation due 

to diffraction increases with depth z. Thus, we have confidence in the validity of Eq. 4.11. 

The monochromatic two-way results labeled "Two-Way 1997" in the figures are included 

for comparison and will be discussed in the next section. 

The validity of Eq. 4.18 for b > a can be checked by considering the total pres- 

sure impinging on an infinite receiver; this leads to a theoretical result and new insight. 

Multiplying Eq. 4.18 for b > a by nb2 and some further algebra yields 

-.2 .na 
(atf) <#i(z,u;))6 = -j^f- e~Jkz - 2ze~^kz+^+£) [X2(u,vb) - jXi(u,t;6)], (7.1) 

where u = ka2/z and Vf, = kab/z as before. Letting b approach infinity yields 

na 
lim (nb ){Hi(z,u))b = -j-j-e 

6-KX) K 

-jkz (7.2) 

116 



The same result can be obtained by spatially integrating the Lommel diffraction formulation 

of Eq. 3.6 directly. Doing so yields 

rb 

yirtf)(H1(z,u))h= lim27r/ 
6—)-oo 

rb ^ 
lim{iTb2)(H1(z,uj))b= lim 2ir     Hi{p,z,u)pdp (7.3) 

b—)-oo b—>oo      Jo 

where the upper limit of infinity is not problematic because of the rapidly converging 

Lommel functions in the integrand. Eq. 7.2 can be obtained from Eq. 7.3 with the help of 

Watson [63, p. 541], Wheelon [65, Eq. 1.608 and Eq. 1.610, pp. 76-77], and Euler's formula. 

At any rate, the closed-form result in Eq. 7.2 is the same as that reported by 

Williams in [67, Eq. 40] for monochromatic diffraction with a theoretically infinite receiver. 

If Eq. 7.2 is used to calculate total maximum pressure (Section 3.1), it yields the pressure, 

CQTra2e^:'kz, "produced by a section of area 7ra2 cut out of a plane wave that has the same 

particle velocity, [unity in this case], as does the piston source. [67, p.289]." In essence, the 

magnitude of the total maximum pressure detected by the infinite receiver is the same at 

all z-planes. No pressure/energy is lost because (i) the receiver is infinite and (ii) no loss 

mechanism has been introduced into the theory. In this case, diffraction introduces only a 

depth-dependent phase shift via the e~ikz term. 

Further insight can be gained by examining Eq. 7.1 and Eq. 7.2 more closely. Note 

that the first term in Eq. 7.1 is identical to right-hand side of Eq. 7.2. Thus, the first 

term in Eq. 7.1 represents the infinite-receiver solution, and the second term represents the 

influence of diffraction [5]. Similar observations can be made about Eqs. 4.10-4.11. Further, 

the k = w/c in the denominator of the infinite-receiver solution of Eq. 7.2 indicates that 

one-way diffraction is dominated by a 1// lowpass filtering effect. This claim is consistent 

with the results shown in Figs. 4.5(c)-(d) where the dotted line in each graph shows the 

squared-magnitude (dB) of 1/f with DC removed. Recall Fig. 4.5 was plotted with the 

parameter b = a. 

Consider a finite receiver with radius b = a in terms of the beam pattern of a 

transmitter with radius a. Close in to the transducer, the beam is concentrated in a region 

bounded by the dimensions of the transmitter. Thus, a finite receiver with radius b = a, as 
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in Fig. 5.4(c), placed close to the transmitter detects most of the transmitted energy because 

the receiver has the same dimensions as the transmitter. In effect, it is indistinguishable 

from an infinite receiver, and the data in Fig. 4.5(c) show excellent agreement. Farther 

out from the transmitter, the beam begins to spread or diffract. A finite receiver placed 

further away from the transmitter will no longer have the same effect as an infinite receiver. 

Thus, the data in Fig. 4.5(c) show poor agreement. This insight is further testimony to 

the practical and theoretical value of the proposed unified theory of spatially averaged 

diffraction correction. 

7.2    Two-Way Diffraction 

In this section, the two interpretations of two-way diffraction are considered. First, mirror- 

image diffraction is briefly discussed. Next, autoconvolution diffraction is discussed in 

more detail. In particular, the validity of Eqs. 5.13-5.15 is re-examined and new insights 

are developed. Finally, the mirror-image and autoconvolution interpretations of two-way 

diffraction are compared. 

7.2.1    Mirror-Image Diffraction 

The mirror-image interpretation of diffraction claims that results derived for one-way diffrac- 

tion can be applied to two-way diffraction by simply doubling the distance z in the one-way 

equations. In the framework of the proposed unified theory, the mirror-image interpretation 

is 

<M*,*)>& = <M2;M)>6 (7-4) 

if Eq. 4.5 is used, or 

(h2(z,t))b = (h1(2z,t))b (7.5) 

if Eq. 4.18 is used. Note that Eq. 7.4 is based on the arccos diffraction formulation 

while Eq. 7.5 is based on the Lommel diffraction formulation and that 2z appears in both 
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equations. Since we have already established the depth-dependent time scaling inherent 

in all the one-way results developed so far (Fig. 3.3 and Figs 4.3-4.7), we can say that 

the mirror-image interpretation of two-way diffraction is a time-scaled version of one-way 

diffraction where time is compressed by a factor of two. 

7.2.2    Autoconvolution Diffraction 

In this section, the closed-form frequency-domain expressions in Eqs. 5.13-5.15 are re- 

examined; we are particularly interested in their behavior as a function of ft, the radius 

of the reflecting disk. Additionally, we are interested in tying up a loose end, namely the 

verification of Eqs. 5.13-5.15 for focused transducers. The validity of Eq. 5.13 has been 

demonstrated already for an unfocused transducer. Specifically, Section 5.4 showed that 

Eq. 5.13 with b = a/1000 approximated the behavior of an on-axis point scatterer. It 

must be emphasized that the closed-form spatially averaged expression in conjunction with 

the assumption of minimum phase captured the salient features of the impulse response 

predicted by the well-established theory for an on-axis point scatterer. 

Figs. 7.3-7.14 validate the theory for both focused and unfocused transducers in a 

magnitude-squared sense; the figures are grouped at the end of the chapter for convenience. 

The figures show attenuation due to diffraction (the diffraction filter) as a function of 

frequency / and depth z for different values of the parameter b and for different types of 

focusing (Section 6.1). Relevant parameters are annotated in the figures. 

As before, the speed of sound was set at c = 1540 m/s, and piston diameters 

were set at la = 13 mm. The transducers were assumed to have an infinitely broadband 

response, and the excitation was assumed to be an impulse. The sampling frequency was 

set at fs = 36 MHz; thus, the Nyquist frequency was 18 MHz. The annotation / = 2.25 in 

the plots is a reminder that sampling rate was set based on 2X oversampling of real piston 

transducer with fc = 2.25 MHz and an upper frequency of 4.5 MHz. 

Understanding the figures requires some explanation; for the purposes of this dis- 

cussion, Z = a2fc/c is taken as the focal point for an unfocused transducer (Section 3.3). 
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Consider the discussion about conservation of energy in terms of a disk with some finite 

radius b (Section 6.1); the disk is free to move along the z-axis. For a disk of fixed radius b, 

the theory predicts that the reflected energy received by the transducer peaks when the disk 

is near focus and drops off as the disk is moved away from the focus. Thus, the attenuation 

due to diffraction will be minimized near the focus of the transducer. Figs. 7.3-7.10 confirm 

the prediction quite nicely. For a fixed depth z, the attenuation due to diffraction should 

decrease as the radius b of the reflecting disk is increased because the disk will reflect more 

energy. Again, Figs. 7.3-7.10 confirm this prediction quite nicely. 

The previous discussion considered a disk with some finite radius. A theoretical 

result and new physical insight can be gained by considering Eq. 5.15 and Fig. 5.1 in terms 

of an infinite disk and the total energy it reflects back to a transducer. Multiplying Eq. 5.15 

by 7ra2 produces 

(m?) <ftM>. afc*-g£k2. (£f* Q2,W) . (7.6, 
\ s=0 / 

Letting b approach infinity yields 
9 

\im{-Ka2)(H2{z,u))b = -^. (7.7) 

Eq. 7.7 can be used to calculate the magnitude of the total maximum pressure (Section 3.1) 

reflected by infinite disk; the result is proportional to giro,2. This quantity can be thought of 

as the magnitude of the total pressure reflected by an infinite disk which was disturbed by 

acoustic energy produced by a section of area ira2 cut out of a plane wave that has the same 

particle velocity, [in our case unity], as does the piston source. This is simply an extension 

of Williams' reasoning discussed at the end of Section 7.1. In essence, the magnitude of the 

total pressure detected by the transducer is the same from all z-planes; no pressure/energy 

is lost because the reflecting disk is infinite and no loss mechanism has been introduced 

into the theory. Diffraction, in this case, probably introduces only a depth-dependent phase 

shift. 

More insight can be gained by examining Eqs. 7.6-7.7.   Note the first term in 

Eq. 7.6 is identical to right-hand side of Eq. 7.7. Thus, the first term in Eq. 7.6 represents 

120 



the infinite-reflector solution, and the second term represents the influence of diffraction [5]. 

Similar observations can be made about Eqs. 5.13-5.14. Furthermore, the factor of 1/A;2 in 

the infinite-reflector solution indicates that the autoconvolution interpretation of two-way 

diffraction is dominated by a l//2 lowpass filtering effect. 

The claim that autoconvolution diffraction with an infinite reflector is dominated 

by a l//2 filtering effect is consistent with the dotted lines shown in Figs. 5.4(c)-(d). Con- 

sider a finite reflector with radius b = a in terms of the beam pattern of a transducer with 

radius a. Close in to the transducer, the beam is concentrated in a region bounded by the 

dimensions of the transducer. Thus, a finite reflector with radius b = a, as in Fig. 5.4(c), 

placed close to the transducer reflects most of the transmitted energy because it has the 

same dimensions as the transmitter. In effect, it is indistinguishable from an infinite reflec- 

tor, and the dotted line in Fig. 5.4(c) is in excellent agreement with the theory. 

Farther out from the transducer, the beam begins to spread or diffract, and a finite 

reflector placed further away from the transducer will not have the same effect as an infinite 

reflector. Thus, the dotted line in Fig. 5.4(c) are not consistent with the theory. Finally, 

the l//2 low-pass filtering effect for two-way diffraction is intuitively appealing: one-way 

diffraction squared. The result is appealing because of its symmetry, and this tempts us to 

claim that the depth-dependent phase shift associated with Eq. 7.7 is e~ik2z. 

7.2.3    Mirror-Image vs. Autoconvolution Diffraction 

The previous sections offered new insights into diffraction from a circular aperture and 

revalidated certain aspects of the unified theory developed in the Chapters 3-5. The theory 

will now be used to present a new comparison of the mirror-image and autoconvolution 

interpretations of ultrasonic reflection imaging. This new comparison is based on Eq. 4.18 

and Eqs. 5.13-5.15. 

Specifically, monochromatic mirror-image and autoconvolution diffraction effects 

for different values of b were computed and plotted as a function of normalized depth. The 

parameters used were c = 1540 m/s, a = 1 cm, and / = 1 MHz.  These parameters are 
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similar to those chosen by Bass in his 1958 work [5]. Both focused and unfocused diffraction 

effects were investigated, and Figs. 7.15-7.18 show the results. Fig. 7.15 illustrates unfocused 

results, and Figs. 7.16-7.18 show focused results. Spatially averaged results for mirror-image 

diffraction from a focused piston transducer are not included. 

A detailed explanation of the figures is required because the graphs are difficult 

to interpret at first glance. The value of b used in computing the data is indicated in the 

title of each plot. The dotted line that appears in each of the plots in Fig. 7.15 is the 

well established one-way on-axis magnitude fluctuation for an unfocused piston transducer 

(circular aperture) [24,48]: 

Hi(p,z,t) 
2 4   . 2 fka2 

p=o     k2        \Az  ' 

This dotted line is often used to demarcate the near field and far field and is included as a 

familiar reference. Note that it is plotted in dB as a function of z\/a2 and that z has been 

used in calculating Eq. 7.8. Hence, the dotted line exhibits it last maximum at z\/a2 = 1. 

The dashed lines in Fig. 7.15 show unfocused results based on a mirror-image 

interpretation of Eq. 4.18. That is, Eq. 4.18 was calculated using a depth of 2z but plotted 

as function of zX/a2 rather than 2zX/a2. The solid lines show unfocused autoconvolution 

results based on Eqs. 5.13-5.15. These unfocused results will be discussed after explaining 

how to interpret the focused results in Figs. 7.16-7.18. 

The value of b used in computing the focused data is indicated in each of the plots, 

and the dotted line that appears in each of the plots in Figs. 7.16-7.18 is based on the well 

established one-way on-axis magnitude fluctuation for a focused piston transducer [35]: 

2 
Hi(p,z,t) 

P=o 

R      .   (ka2(R-z) 
sin ' 

R-z       \4z      R 
(7.9) 

Specifically, the dotted line in each of the plots in Figs. 7.16-7.18 is based on a mirror- 

image interpretation of Eq. 7.9; thus, the data were calculated using 2z in Eq. 7.9 but 

plotted as a function of zX/a2. This choice was made because no closed-form expressions 

were derived for spatially averaged one-way diffraction from a focused piston transducer 
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and no such results are plotted in the figures. The solid lines show focused autoconvolution 

results based on Eqs. 5.13-5.15. 

The unfocused results shown in Fig. 7.15 reveal new insights into mirror-image 

and autoconvolution diffraction and simultaneously re-validate the theory developed in 

Chapters 3-5. First, the plots reveal that the mirror-image and autoconvolution interpreta- 

tions of two-way diffraction are not as similar as previously thought. Section 1.5 stated that 

both the mirror-image and autoconvolution interpretations of ultrasonic reflection imaging 

have merit and implied that both interpretations produced similar results. Figs. 7.15-7.18 

refute the implication for b < a but confirm it for b « a and b > a. 

Specifically, attenuation predicted by the two interpretations for b < a differs in 

two ways: (i) the minimum attenuation associated with each of the two interpretations 

occurs at different depths, and (ii) the attenuation predicted by the two interpretations 

varies greatly for all z. When b w a, the mirror-image and autoconvolution data are quite 

similar; they differ only by a fraction of a dB. (See also Figs. 7.1(d) and 7.2(d) which are 

included are included for comparison.) 

When b > a, the attenuation predicted by the two interpretations does not differ by 

much. Note however that the mirror-image interpretation starts to break down for b = 2a, 

and this is probably due to the Fresnel approximation. Nonetheless, the graphs explain 

the popularity and acceptance of the mirror-image interpretation of two-way diffraction 

for b « a. They might also help to explain certain differences that Bass reported in his 

1958 experiment on mirror-image diffraction [5, Fig. 2]. In particular, the plots of Bass's 

theoretical predictions and his experimental data are strikingly similar to the plots shown 

in Figs. 7.15 for b = a. 

The unfocused results further validate the theory discussed in the previous chap- 

ters. Specifically, attenuation for a fixed depth z decreases with increasing b in both inter- 

pretations. In the limit as b approaches infinity, the attenuation theoretically is constant 

with depth z. The results shown in Fig. 7.15 are consistent with the mirror-image interpre- 

tation of Eq. 7.2 and Eq. 7.7. Loosely interpreted, the two equations state that an infinite 
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disk reflects all the energy originally emitted by the transducer. The magnitude of the 

reflected energy is modified only by a factor of k or k2 depending on which interpretation is 

invoked; there is no dependence on depth z. The focused results shown in Figs. 7.16-7.18 

show similar trends. 

7.3    Two-Way Diffraction and Linear Models 

Section 5.1 alluded to idiosyncrasies of linear models of ultrasonic reflection imaging. There 

are a number of linear models from which to choose, and several references propose suitable 

models [18,29,31,60,61,64]. These linear models are similar in that they incorporate the 

autoconvolution interpretation of reflection imaging, but they differ in order and placement 

of time derivatives. Indeed, the linear model presented in Section 5.1 is the same as that 

proposed by Hunt, et al. [29] but modified with a second-order time-derivative. The focus 

of this section will be on the mirror-image and autoconvolution interpretations of two-way 

diffraction in linear models of ultrasonic imaging. The discussion will be axiomatic, cursory, 

and for the most part, qualitative. Nonetheless, new insights are promised. 

Since the linear models in question are based on an autoconvolution of the one- 

way velocity potential impulse response, the model of one-way diffraction requires some 

discussion. Consider an ideal piston transducer being excited by one cycle of a sinusoid 

of a given frequency and a theoretical point receiver located some coaxial distance z from 

the transducer. This situation was investigated experimentally by Weight and Hayman [64] 

in 1978. The researchers investigated the response of a 75-/xm radius wideband receiving 

element in the beam of a wideband unfocused piston transducer of 8-mm radius that was 

excited by a single cycle of a3-MHz sinusoid. In the framework of our unified theory, the 

mathematics of the above experiment may be modeled as 

~dvr{t) 
VR(z,t) =ci *(hi(z,t))b (7.10) 

dt 

where c\ captures any constants of proportionality, z = 20 mm, b = 75/im, and the re- 

maining terms are the same as before (Eq.5.1). Note the first derivative is used in Eq. 7.10 

124 



because we are considering one-way diffraction. Fig. 7.19 shows a plot of the results obtained 

from the one-way model in Eq. 7.10. 

The results compare quite favorably to the theoretical and experimental results 

reported by Weight and Hayman; indeed, the theoretical results are virtually identical. 

Similar results would have been obtained had we used {hi(z,t))b instead of (/ii(z,i))6 in 

Eq. 7.10. However, any derivative of other than first order would give very different results. 

Furthermore, it is important to emphasize that the results shown in Fig. 7.19 are based on 

spatially averaged diffraction theory, not on point theory. 

Attention is now focused on two-way diffraction. Consider an ideal piston trans- 

ducer being excited by one cycle of a given frequency and a theoretical point scatterer located 

at some coaxial distance z from the transducer. This situation was also investigated exper- 

imentally by Weight and Hayman. The researchers investigated the response obtained by 

insonifying a 0.4-mm on-axis disk with 4-MHz single-cycle excitation of a 16-mm diameter 

unfocused wideband transducer operating in pulse-echo mode. 

In the autoconvolution interpretation of reflection imaging, the mathematics of 

the above experiment may be modeled 

'd2vT{t) 
VR.{z,t) = c2 *{h2(z,t))b (7.11) 

dt2 

where c2 captures any constants of proportionality, z = 20 mm, b = 0.4 mm, and the 

remainder of the terms are the same as before. Note the second derivative in Eq. 7.11. 

Fig. 7.20 shows that results obtained from Eq. 7.11 again compare quite favorably to the 

theoretical and experimental results reported by Weight and Hayman [64]. Similar results 

would have been obtained had {h2(z,t))i, in Eq- 7.11 been used. However, any derivative 

other than second order would give different results. It is again important to emphasize 

that the results shown in the figure are based on a spatially averaged diffraction theory, not 

on point theory. 

Let us now apply the mirror-image interpretation of two-way diffraction in Eq. 7.11. 

In the mirror-image interpretation of reflection imaging, the mathematics of the previous 
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experiment may be modeled 

/     N \d2vT{t) 
vR{z,t) = c2 *{hi{2z,t))b (7.12) 

dt2 

where {hi(2z,t)}i, captures the mirror-image interpretation, and the remainder of the terms 

are the same as before. The results from Eq. 7.12 are plotted in Fig. 7.21. 

Unlike the previous results, the mirror-image results do not compare favorably 

to the theoretical and experimental results reported by Weight and Hayman [64]. Indeed, 

the mirror-image interpretation predicts only two output pulses while the autoconvolution 

interpretation predicts three. Two output pulses would have been obtained had {hi(2z, t))b 

been used in Eq. 7.12. An interesting observation in regards to time scaling is also noted. 

Recall that velocity-potential impulse responses are compressed with time for increasing 

values of z. Since 2z is used in computing mirror-image results, it is not surprising that 

the time separation between the two output pulses shown in Fig. 7.21 is half the separation 

between the two pulses shown in Fig. 7.19. 

7.4    Chapter Summary 

This chapter presented new material on mirror-image diffraction, autoconvolution diffrac- 

tion, and linear models of ultrasound. Three special cases of one-way and two-way diffrac- 

tion were investigated: (i) b = a and two limiting cases (ii) b —> 0, and (iii) b —)■ oo. The 

investigation further verified the predictive power of the proposed unified theory and led to 

a deeper understanding of diffraction from a circular aperture. 

The limiting case b -» 0 demonstrated that the spatially integrated theory captured 

all salient features predicted by point theory. The second limiting case b -> oo revealed that 

one-way and two-way diffraction may be characterized as 1// and l//2 filters, respectively. 

The comparison of mirror-image and autoconvolution diffraction revealed that the two in- 

terpretations behave quite differently for different values of b, and they are not as similar 

as previously thought.   An investigation of linear models of ultrasonic reflection imaging 
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revealed that one-way models require only a first-order time derivative while two-way mod- 

els require a second-order time derivative. Finally, it was discovered that the mirror-image 

interpretation of reflection imaging is probably not a good choice for computing the two-way 

velocity-potential impulse response. 
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Figure 7.15: Mirror-image (dashed), autoconvolution diffraction (solid), and near-far field 
(dotted): unfocused. 
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Figure 7.18: Mirror-image (dotted) and autoconvolution diffraction (solid): short focus. 
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Chapter 8 

Conclusions and Recommendations 

Chapter 1 presented tutorial material, described the goals of this research, and explained 

how the research goals would be achieved. Chapter 2 provided a literature review and sup- 

plemented the tutorial material in Chapter 1 with more background information. Chapter 3 

through Chapter 7 presented development, derivation, verification, validation, and applica- 

tion of a unified theory of spatially averaged diffraction corrections for piston transducers 

operating in pulsed mode. This chapter puts the unified theory and the entire document in 

perspective by combining a comparative literature review with a discussion of results. The 

document is concluded with a number of specific recommendations for further research. 

8.1    Conclusions 

8.1.1    Research Goals 

This research had three goals. The first was to derive a closed-form spatially averaged 

two-way diffraction correction for a focused piston transducer operating in pulsed mode. 

The second was to develop a unified theory of spatially averaged diffraction corrections for 

piston transducers. The final goal was to advance the scientific community's understanding 

of diffraction from a circular aperture. The goals were met. 
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8.1.2    Fourier Equivalence 

Section 1.3 stated that the Fourier equivalence of the arccos and the Lommel diffraction for- 

mulations as an approximate Fourier transform pair has been overlooked. It has been over- 

looked for two reasons. First, the Lommel and arccos formulations are based on monochro- 

matic and impulsive excitation, respectively; hence, they are usually treated separately in 

the literature on ultrasound. Second, the very notion of an approximate Fourier transform 

in terms of time and frequency is unconventional. 

In Chapter 3, we outlined derivations of the arccos and Lommel diffraction formu- 

lations, compared the two formulations, introduced the notion of an approximate Fourier 

transform pair, and, ultimately, unified the arccos and Lommel diffraction formulations in 

way previously unreported in the literature on ultrasound. Chapter 3 also put these two 

seminal descriptions of diffraction from a circular aperture in new perspective. Specifically, 

Section 3.1 showed that the Lommel formulation for diffraction from a circular aperture 

is a monochromatic frequency-domain expression based on the Fresnel approximation to 

the Rayleigh-Sommerfeld integral of scalar diffraction theory. Thus, the Lommel diffrac- 

tion formulation can be interpreted as a convolution involving a depth-dependent quadratic 

phase factor (Eq. 3.5). On the other hand, Section 3.2 showed that the arccos formulation 

for diffraction from a circular aperture is a set of polychromatic time-domain expressions 

based on the exact Rayleigh-Sommerfeld integral (with obliquity factor of unity). The 

arccos diffraction formulation was interpreted in terms of a depth-dependent time-scaling 

operation. 

Section 3.4 presented quantitative evidence leading to the conclusion that the 

Fourier equivalence of the arccos and Lommel diffraction formulations form an approximate 

Fourier transform pair for both focused and unfocused piston transducers. Indeed, it was 

shown that the Lommel diffraction formulation captures the magnitude response, phase 

response, and time-scaling predicted by the arccos diffraction formulation. Numerical results 

obtained from both formulations showed good overall agreement in the Fresnel region. 
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8.1.3    Spatially Averaged One-Way Diffraction 

The Fourier equivalence of the arccos and Lommel diffraction formulations as an approx- 

imate Fourier transform pair was established in Chapter 3. This Fourier equivalence was 

further exploited in Chapter 4 to derive general closed-form frequency-domain expressions 

describing one-way diffraction for unfocused piston transmitters and receivers (Eq 4.18). 

The expressions are general in the sense that the area of the receiver may be less than, 

equal to, or greater than that of the transmitter. The frequency-domain expressions were 

derived within the framework of Lommel's treatment of Fresnel diffraction. Additionally, a 

closed-form time-domain description of one-way diffraction for a finite receiver of any radius 

(Eq. 4.5) was derived. No focused results were derived for the one-way case. 

Arccos Diffraction Formulation 

The closed-form time-domain expression describing spatially averaged one-way diffraction 

effects for a finite receiver of any radius was derived in Section 4.1. The expression itself is 

not new [10] but its derivation is. The derivation consisted of spatially averaging the inte- 

gral form of the arccos diffraction formulation and interpreting the result as a Fourier-Bessel 

or Hankel transform. The result, Eq. 4.5, was shown to be simply a scaled version of the 

cylinder-function cross correlation derived by Gaskill [22, pp. 302-304] for optical diffrac- 

tion. This realization led to interesting insights concerning optical and one-way ultrasonic 

diffraction. 

Lommel Diffraction Formulation 

A general set of closed-form frequency-domain expressions that describe spatially averaged 

one-way diffraction effects for a finite receiver of any radius was derived (Eq. 4.18). Lommel's 

interpretation of Fresnel diffraction served as a unified framework for the derivation. The 

derivation of Eq. 4.18 differs from previous treatments. For example, Williams [66, Eq. 28] 

derived one of the first spatially integrated results for one-way diffraction from an unfocused 
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piston transducer in 1951. His result also is monochromatic but is limited to a receiver 

having an area equal to that of the transmitter. Bass's 1958 closed-form result [5, Eq. 14] 

is limited in a similar way. Almost two decades would pass before Williams derived a more 

general result applicable to transmitters and receivers having different areas [67, Eq. 39]. 

Unlike the derivation of Eq. 4.5, Williams' 1951 and 1971 results were not derived in a 

unified mathematical framework; thus, the derivations are somewhat difficult to follow. 

It should be mentioned that Rogers and Van Buren used Lommel's treatment of 

Fresnel diffraction in deriving a closed-form spatially integrated result for one-way diffrac- 

tion from a unfocused piston transducer in 1974 [54]. However, their work differs from 

that presented in Section 4.2 in two ways. First, their result is limited to transmitters and 

receivers having equal areas. Second, they did not integrate the Lommel diffraction for- 

mulation directly; instead they presented two alternative methods of obtaining their result. 

The first relied on the method of stationary phase [48], while the second began with an 

adaptation of Weber's second exponential integral [63]. Eq. 4.18, which includes Eq. 10 

in [54], was derived in a more accessible and elegant fashion by integrating the Lommel 

diffraction formulation directly. While Eq. 4.18 is general in terms of transmitter and re- 

ceiver areas, it is not applicable to focused transducers. The interested reader is referred to 

Chen at al. for closed-form expressions [11, Eq. 22 &: Eq. 24] describing spatially averaged 

one-way diffraction from a focused piston transducer. 

Extending Fourier Equivalence 

Section 4.3 compared results obtained from the time-domain and frequency-domain expres- 

sions just discussed. These showed remarkable agreement for conditions meeting the Fresnel 

approximation. Furthermore, the results verified the theoretical prediction that the Fourier 

equivalence of the arccos and Lommel diffraction formulations can be extended to spatially 

averaged one-way diffraction. No such comparison or analysis exists in the literature. Fi- 

nally, all results derived in Section 4.3 can be used in the mirror-image interpretation of 

two-way diffraction simply by doubling z in Eq. 4.5 and Eq. 4.18. 
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8.1.4 Spatially Averaged Autoconvolution Diffraction 

Chapter 5 attacked autoconvolution diffraction using Lommel's treatment of Presnel diffrac- 

tion from a circular aperture. Application of the Cauchy-Schwarz inequality for integrals 

along with an ad hoc assumption allowed a set of closed-form expressions derived by Wolf in 

1951 [68] for optical diffraction to be applied to spatially averaged autoconvolution diffrac- 

tion (Eqs. 5.13-5.15). Although the expressions in Eqs. 5.13-5.15 do not consider phase, 

they are completely general in that they are theoretically applicable to a reflecting disk of 

any radius and to both focused and unfocused piston transducers. Fourier equivalence of 

the arccos and Lommel diffraction formulations was extended to spatially averaged auto- 

convolution diffraction, and the assumption of minimum phase allowed estimation of the 

phase response. Results obtained from the closed-form Lommel-based expressions auto- 

convolution diffraction were compared with the results obtained by numerically integrating 

an autoconvolution of the arccos diffraction formulation. The normalized results showed 

remarkable agreement in the Presnel region despite the number of assumptions made to 

arrive at the results. 

The only other closed-form solution for spatially averaged autoconvolution diffrac- 

tion was derived by Cardoso and Fink [9] in 1991. Their work is limited to a magnitude- 

only expression, and magnitude responses derived via Eqs. 5.13-5.15 agree qualitatively 

with those presented in [9]. Fink and Cardoso did not obtain impulse responses from their 

results nor did they compare magnitude-only results to numerically integrated arccos re- 

sults. The application of Wolf's 1951 equations for optical diffraction to ultrasound and the 

results obtained are new developments in ultrasound. 

8.1.5 Experimental Investigation 

Chapter 6 presented results from an experimental investigation of the unified diffraction 

theory developed in Chapter 5. Specifically, autoconvolution diffraction corrections based 

on Eqs. 5.13-5.15 were implemented with time-varying filters, and diffraction-corrected 
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B-mode images were reconstructed using a short-time Fourier analysis/synthesis algorithm. 

The raw and diffraction-corrected images were compared qualitatively. Differences between 

raw and corrected RF data were analyzed via spectral quantitatively centroids. 

The experimental investigation was a preliminary application of theory designed 

to gauge only the practicality of autoconvolution diffraction corrections; it was not designed 

to be a comprehensive test of the theory. Despite its preliminary nature, the investigation 

included ten laboratory experiments. No study on diffraction correction contains as many 

examples as presented in Chapter 6; see, for example, [9,13,20]. Although the visual and 

spectral differences between the raw and diffraction-corrected data were subtle, the overall 

results are quite promising. At best, the proposed autoconvolution diffraction corrections 

improved the visual quality of the ultrasound images while simultaneously unbiasing the 

spectral centroids. At worst, the proposed diffraction corrections did, as Hippocrates taught, 

no harm. 

8.1.6    Analytical Investigation 

An analytical investigation presented in Chapter 7 demonstrated the practicality and power 

of the unified theory developed in Chapters 3-5. The investigation showed the unified theory 

accurately predicts diffraction effects in the limiting cases of a point receiver (scatterer) and 

an infinite receiver (reflector). Section 7.2.3 quantitatively compared the mirror-image and 

autoconvolution interpretations of two-way diffraction in a new way; the comparison showed 

that the two interpretations are not as similar as previously thought. Finally, linear models 

of ultrasonic reflection imaging were !1 considered in Section 7.3; it was shown that mirror- 

image interpretation may not be suitable for computing two-way impulse responses. 

8.2    Recommendations for Improvement and Further Research 

This research has produced a unified theory of spatially averaged diffraction corrections 

for ultrasonic piston transducers operating in pulsed mode. Most of the theory has been 
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cast in closed-form and verified analytically and numerically. Additionally, autoconvolution 

diffraction corrections were applied experimentally. Despite this, much more work needs to 

be done. 

8.2.1 General 

This section points out three general aspects of the unified theory requiring further research. 

First, the closed-form spatially averaged results and the numerically integrated results ne- 

glect the mathematical singularities inherent in the arccos and Lommel diffraction formula- 

tions. The Lommel diffraction formulation was spatially averaged by integrating over p dp; 

thus, these results do not account for energetic contributions from the radial origin (p = 0). 

Similarly, the arccos diffraction formulation (Eqs. 3.11-3.12) is problematic when ct = z 

and p = a. For the purposes of this work, these two singularities were neglected. Despite 

this, the overall results presented in the previous chapters showed reasonable agreement. 

Energetic contributions from these singularities may need to be included in future work. 

The second issue concerns computation of the equations presented in Section 1.9. 

In this work, all results were obtained by programming the equations explicitly in do- 

loops. This style may be avoided if recursion relations are used which may also reduce 

processing time. At any rate, recursion relations for most of the equations in Section 1.9 

can be found in the references [25, 63, 68, 69]. Finally and most importantly, large-scale 

experimentation designed to test the practical limits and clinical applicability of the entire 

theory is imperative. 

8.2.2 Fourier Equivalence 

The Fourier equivalence of the arccos and Lommel diffraction formulations as an approxi- 

mate Fourier transform pair was rigorously demonstrated for unfocused piston transducers 

and indirectly demonstrated for focused piston transducers. Thus a study of focused piston 

transducers following the same format as Chapter 3.5 is required. The arccos diffraction 

formulation for a focused piston transducer can be found in [2], and Eq. 3.18 gives the 
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Lommel diffraction formulation for a focused piston transducer. The study should investi- 

gate long, short, and medium focusing [46]; it should also delineate where the arccos and 

Lommel diffraction formulations for focused piston transducers agree and disagree. 

8.2.3 Spatially Averaged One-Way Diffraction 

Chapter 4 presented a detailed theoretical treatment of spatially averaged one-way diffrac- 

tion for unfocused piston transducers. An experimental study of finite receivers is needed to 

validate the theory; the experiments could be modeled after those in [64]. Prom a theoret- 

ical perspective, a study comparing spatially averaged one-way diffraction effects obtained 

from Eq. 4.11 and previously tabulated values [7,32] would make a useful project. 

No results for focused piston transducers were derived in Chapter 4, and this 

gaping hole needs to be filled. Doing so, however, will be difficult. Basic probability reveals 

that a completely general closed-form solution for spatially averaged one-way diffraction 

would have to cover 36 combinations including the following variations: 

• focused or unfocused transmitter: 2 choices, 

• focused or unfocused receiver: 2 choices, 

• transmitter area <, =, and > receiver area: 3 choices, 

• transmitter focal length <, =, and > receiver focal length: 3 choices. 

Add to this the fact that closed-form results would have to be derived in the time and 

frequency domains. The strictly unfocused results in Eq. 4.5 and Eq. 4.18 and the focused 

results derived by Chen, et al. [11] would ease the burden somewhat but, clearly, this is a 

long-term project. Here again, experiments modeled after those in [64] would serve to test 

the theory. 

8.2.4 Spatially Averaged Autoconvolution Diffraction 

Chapter 5 presented an ad hoc derivation of spatially averaged autoconvolution diffraction 

effects for both focused and unfocused piston transducers. The Fourier equivalence of the 
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arccos and Lommel diffraction formulations in conjunction with the assumption of minimum 

phase allowed the derivation of Eq. 5.16. To the extent that Eq. 5.11 is valid, Eq. 5.16 is 

also valid for both focused and unfocused transducers. Eq. 5.16 was analytically verified 

for the unfocused case in terms of both magnitude and phase and for the focused case in 

terms of magnitude only. 

Thus, a study of focused piston transducers following the format of Section 5.4 is 

required. The arccos diffraction formulation for a focused piston transducer can be found 

in [2], and it would have to be numerically integrated. Eq. 5.16 could be used as is, as long 

as the time reversal for z > R is observed. The study should investigate long, short, and 

medium focusing [46] and delineate where the arccos and Lommel diffraction formulations 

for spatially averaged autoconvolution diffraction agree and disagree. Of course, an exper- 

imental study of reflection by large planar disk reflectors is needed to validate the theory; 

the experiments could be modeled, again, after those done by Weight and Hayman [64]. 

The derivation of spatially averaged autoconvolution diffraction is lacking in three 

respects. First, a closed-form time-domain expression for spatially averaged autoconvolution 

diffraction could not be derived because Eq. 5.3 was too difficult to solve analytically even 

for the unfocused case. We are doubtful that a closed-form solution can be found, if indeed 

one exists. Smarter minds may prevail. Along the same lines, Eq. 5.4 proved difficult to solve 

in closed form even after substituting Hi(p,z,u) with Hi(p,z,u), the Lommel diffraction 

formulation. Nonetheless, we are somewhat optimistic that a closed-form solution can be 

found provided the Lommel diffraction formulation is used in Eq. 5.4. Despite our less-than- 

enthusiastic optimism, finding a closed-form solution, if one exists, will take great ingenuity 

and tenacity. Finally, the ad hoc assumption of approximate equality in Eq. 5.11 requires 

quantitative and qualitative elucidation. 

8.2.5    More Experiments and Analysis 

Section 1.5 explained that ultrasonic reflection imaging is a volumetric or 3-D imaging 

modality; thus, volume averaging is more realistic than spatial averaging over a planar disk. 
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Thus, both the mirror-image and autoconvolution interpretations of two-way diffraction are 

patently incorrect. However, spatial averaging over a volume is significantly more difficult, 

both analytically and computationally, than spatial averaging over a planar disk. With no 

other viable alternative, numerous researchers in ultrasound assume spatial averaging over 

a planar disk gives a reasonably accurate estimate of reality. The question then becomes 

what size disk should be used in calculating diffraction corrections. Though touched on 

in Section 6.1, no definitive answer was postulated. Obtaining a more definitive answer 

is possible with extensive experimentation and subsequent data analysis. Our suspicion is 

that the radius of the disk b will have to be varied as a function of depth z. 

As mentioned in Section 1.4, both the mirror-image and autoconvolution interpre- 

tations of two-way diffraction have physical merit and mathematical appeal. Experiments 

designed to compare the two interpretations would be of great interest to the ultrasound 

community. The experiments should focus not on which interpretation is correct; neither 

can be in a strict sense. Rather, the experiments should be designed to determine condi- 

tions under which the two interpretations hold. Another suggestion is for an analytical and 

experimental investigation of linear models of ultrasound. The analytical portion of the 

investigation would compile a reasonably thorough and authoritative bibliography of linear 

models on ultrasonic reflection imaging. The bibliography should include (i) a quantitative 

and qualitative discussion of similarities and differences amongst the models, (ii) rigorous 

dimensional analysis of terms contained in the models, and (iii) simulations based on a rep- 

resentative sampling of the more cogent models. The experimental portion would compare 

data obtained from experimental data with results obtained from simulations. 

One final recommendation is to study the psychophysical effects of diffraction 

correction. Trained observers, such as radiologists, sonographers, and researchers in ul- 

trasound, could compare raw and diffraction-corrected images and provide qualitative and 

quantitative evaluations of the images. The evaluations could be subsequently analyzed 

using the tools of psychophysics. This is probably the most meaningful follow-on work that 

could be done. 
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Appendix A 

Two Lemmas 

Lemma 1. 

00 

Ysi-lYUn^siUiV) = Zn(u,v) (A.l) 
s=0 

Proof. 

OO 00 OO „  i o„ LO„ 

Y,(-l)SUn+2s(u, V) = £(-ir £(-l)P ( J Jn+2s+2P(v) (A.2) 
s=0 s=0 p=0 

-22,^2, /q,\n+2s+2p 
= EE(-1)S+P0 Jn+2S+2P(V) 

s=0 p=0 

Collecting terms of the same order in Jn{v) and arranging the series in ascending order, the 

lemma follows. The grouping of terms is justified since the series is absolutely convergent. 

D 

Lemma 2. 

1   fVb _•«£ f _•« 
- /    vUn(u,v)e 3^ dv = < e Ja [Zn+i(u,u) -jZn(u,u)]     + 
u Ju I 

-■vi ^ e J2u [jZn{u,vb) - Zn+i(u,vb)] i    (A.3) 
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Proof. 

1   fVb 

u 

fVb _■£_ 1   Hb      v-^ /u\n+2s _i£ 
/    vUn(u,v)e J*udv = - /    «S2^(-1)S(-J        ^n+2S(w) >e J2«^ 

~ /-^ /v\ l-(n+2s) .,,2 
= E(-1)S/     (-) Jn+2,(«)e-'*rdt; (A.4) 

The interchanging of the summation and integration sign above is justified since the series 

under the integral sign is uniformly convergent in the range of integration. An observation 

due to Watson [63, p. 543] in conjunction with Euler's formula leads to 

v2 d_ 

di 
je-n** Un ( t-iXt\ - e~^ Un+1 l^,zt 

wt 1-n 

= *[y]       Jn{zt)e-liwt .    (A.5) 

Setting t = v,w = 1/u, and z = 1 yields 

d_ 
dv 

je j2u Un(u,v) -e j2u Un+i(u,v) 
-(;)   « 

v)e •/2u. (A.6) 

The right-hand side of Eq. A.6 and the integrand of Eq. A.4 are in the same form. Thus, 

Lemma 2 follows from the fundamental theorem of integral calculus and application of 

Lemma 1. D 

Lemma 1 and Lemma 2 are simply extensions of Lemma 8 and Lemma 9, respectively, 

in [68]. 
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